Skip to main content
Log in

Study on the Fracture Toughness of 3D Printed Engineering Plastics

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

Using polylactic acid (PLA), polyamide (PA) and glass fiber–reinforced polyamide (GF/PA) as raw materials, samples with different printing temperature and speed were prepared. PLA samples were prepared by fused deposition modeling, and PA and PA/GF samples were prepared by selective laser sintering. The fracture toughness of 3D printed engineering plastics was characterized by three-point bending test. The results show that the process parameters have little effect on the fracture toughness of the specimen. With the change of printing temperature or speed, the fracture toughness of the specimen decreases by 4.9%. The raw materials have great influence on the fracture toughness of the specimens. The fracture toughness of PLA increases by 27.95% compared with PA and 58.71% with GF/PA. The results show that the fracture toughness of PLA is the highest among the three materials. Finally, the fracture surface of the specimen was scanned by scanning electron microscope, and the fracture microstructure was analyzed to reveal the influence of process parameters and raw materials on the fracture toughness of 3D printed engineering plastics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.

Similar content being viewed by others

References

  1. H.B. Rebelo, D. Lecompte, C. Cismasiu, A. Jonet, B. Belkassem and A. Maazoun, Experimental and Numerical Investigation on 3D Printed PLA Sacrificial Honeycomb Cladding, Int. J. Impact Eng., 2019, 131, p 162–173.

    Article  Google Scholar 

  2. C. Lubombo and M.A. Huneault, Effect of Infill Patterns on the Mechanical Performance of Lightweight 3D-Printed Cellular PLA Parts, Mater. Today Commun., 2018, 17, p 214–228.

    Article  CAS  Google Scholar 

  3. X. Tian, T. Liu, Q. Wang, A. Dilmurat, D. Li and G. Ziegmann, Recycling and Remanufacturing of 3D Printed Continuous Carbon Fiber Reinforced PLA Composites, J. Clean. Prod., 2017, 142, p 1609–1618.

    Article  CAS  Google Scholar 

  4. X. Tian, T. Liu, C. Yang, Q. Wang and D. Li, Interface and Performance of 3D Printed Continuous Carbon Fiber Reinforced PLA Composites, Compos. Part A Appl. Sci. Manuf., 2016, 88, p 198–205.

    Article  CAS  Google Scholar 

  5. X.W. Chen, T.J. Zhang and S.H. Liu, Accelerated Ageing Behavior of PMMA under Hygrothermal Air and Water Conditions, Fail. Anal. Prev., 2009, 4, p 193–195.

    Google Scholar 

  6. R. Baptista and M. Guedes, Morphological and Mechanical Characterization of 3D Printed PLA Scaffolds with Controlled Porosity for Trabecular Bone Tissue Replacement, Mater. Sci. Eng. C, 2021, 118, p 111528.

    Article  CAS  Google Scholar 

  7. R.K. Upadhyay, A.K. Mishra and A. Kumar, Mechanical Degradation of 3D Printed PLA in Simulated Marine Environment, Surf. Interfaces, 2020, 21, p 100778.

    Article  CAS  Google Scholar 

  8. R. Baptista, M. Guedes, M.F.C. Pereira, A. Maurício, H. Carrelo and T. Cidade, On the Effect of Design and Fabrication Parameters on Mechanical Performance of 3d printed PLA Scaffolds, Bioprinting, 2020, 20, p e96.

    Article  Google Scholar 

  9. K.N. Gunasekaran, V. Aravinth, C.B. Muthu Kumaran, K. Madhankumar and S. Pradeep Kumar, Investigation of Mechanical Properties of PLA Printed Materials under Varying Infill Density, Mater. Today Proc., 2020, 45, p 1849–1856.

    Article  Google Scholar 

  10. A. Lanzotti, M. Martorelli, S. Maietta, S. Gerbino, F. Penta and A. Gloria, A Comparison Between Mechanical Properties of Specimens 3D Printed with Virgin and Recycled PLA, Procedia CIRP, 2019, 79, p 143–146.

    Article  Google Scholar 

  11. M.A. Salim, Z.H. Termiti and A.M. Saad, Mechanical Properties on ABS/PLA Materials for Geospatial Imaging Printed Product using 3D Printer Technology, Reference Module in Materials Science and Materials Engineering. J.G. Sereni Ed., Elsevier, Amsterdam, 2019

    Google Scholar 

  12. M. Heidari-Rarani, M. Rafiee-Afarani and A.M. Zahedi, Mechanical Characterization of FDM 3D Printing of Continuous Carbon Fiber Reinforced PLA Composites, Compos. Part B Eng., 2019, 175, p 107147.

    Article  CAS  Google Scholar 

  13. Y. Song, Y. Li, W. Song, K. Yee, K.Y. Lee and V.L. Tagarielli, Measurements of the Mechanical Response of Unidirectional 3D-Printed PLA, Mater. Des., 2017, 123, p 154–164.

    Article  CAS  Google Scholar 

  14. X.W. Chen, G.L. Pei and Y.S. Jin, Study on Accelerated Ageing of Aeronautical Perspex(PMMA) in Ultraviolet, J. Aeronaut. Mater., 2009, 29, p 107–112.

    CAS  Google Scholar 

  15. S. Bhagia, R.R. Lowden, D. Erdman, M. Rodriguez, B.A. Haga, I.R.M. Solano, N.C. Gallego, Y. Pu, W. Muchero, V. Kunc and A.J. Ragauskas, Tensile Properties of 3D-Printed Wood-Filled PLA Materials Using Poplar Trees, Appl. Mater. Today, 2020, 21, p 100832.

    Article  Google Scholar 

  16. M.R. Ayatollahi, A. Nabavi-Kivi, B. Bahrami, M. Yazid Yahya and M.R. Khosravani, The Influence of In-Plane Raster Angle on Tensile and Fracture Strengths of 3D-Printed PLA Specimens, Eng. Fract. Mech., 2020, 237, p 107225.

    Article  Google Scholar 

  17. T. Yao, J. Ye, Z. Deng, K. Zhang, Y. Ma and H. Ouyang, Tensile Failure Strength and Separation Angle of FDM 3D Printing PLA Material: Experimental and Theoretical Analyses, Compos. Part B Eng., 2020, 188, p 107894.

    Article  CAS  Google Scholar 

  18. T. Yao, Z. Deng, K. Zhang and S. Li, A Method to Predict the Ultimate Tensile Strength of 3D Printing Polylactic Acid (PLA) Materials with Different Printing Orientations, Compos. Part B Eng., 2019, 163, p 393–402.

    Article  CAS  Google Scholar 

  19. S.K. Dhinesh, P.S. Arun, K.K.L. Senthil and A. Megalingam, Study on Flexural and Tensile Behavior of PLA, ABS and PLA-ABS Materials, Mater. Today Proc., 2020, 45, p 1175–1180.

    Article  Google Scholar 

  20. O.H. Ezeh and L. Susmel, On the Notch Fatigue Strength of Additively Manufactured Polylactide (PLA), Int. J. Fatigue, 2020, 136, p 105.

    Article  Google Scholar 

  21. O.H. Ezeh and L. Susmel, Fatigue Strength of Additively Manufactured Polylactide (PLA): Effect of Raster Angle and Non-zero Mean Stresses, Int. J. Fatigue, 2019, 126, p 319–326.

    Article  CAS  Google Scholar 

  22. O.H. Ezeh and L. Susmel, On the Fatigue Strength of 3D-Printed Polylactide (PLA), Procedia Struct. Integr., 2018, 9, p 29–36.

    Article  Google Scholar 

  23. F.S. Senatov, K.V. Niaza, A.A. Stepashkin and S.D. Kaloshkin, Low-cycle Fatigue Behavior of 3d-Printed PLA-Based Porous Scaffolds, Compos. Part B Eng., 2016, 97, p 193–200.

    Article  CAS  Google Scholar 

  24. J.V. Ecker, I. Burzic, A. Haider, S. Hild and H. Rennhofer, Improving the Impact Strength of PLA and Its Blends with PHA in Fused Layer Modelling, Polym. Test, 2019, 78, p 105929.

    Article  Google Scholar 

  25. P. Kakanuru and K. Pochiraju, Moisture Ingress and Degradation of Additively Manufactured PLA, ABS and PLA/SiC Composite Parts, Addit. Manuf., 2020, 36, p 101529.

    CAS  Google Scholar 

  26. J. Kiendl and C. Gao, Controlling Toughness and Strength of FDM 3D-Printed PLA Components Through the Raster Layup, Compos. Part B Eng., 2020, 180, p 107562.

    Article  CAS  Google Scholar 

  27. L. Fixtures, ASTM Standard Test Method for Plane-Strain Fracture Toughness of Metallic Materials, 1997.

  28. M. Janssen, J. Zuidema and R. Wanhill, Fracture Mechanics, 2nd ed. Spon Press, London, 2004.

    Book  Google Scholar 

Download references

Acknowledgment

The authors are grateful for the financial support provided by the Six Talent Peaks Project in Jiangsu Province (Grant No. 2019-KTHY-059).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenfeng Hao.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, Y., Liu, Y., Hao, W. et al. Study on the Fracture Toughness of 3D Printed Engineering Plastics. J. of Materi Eng and Perform 31, 2889–2895 (2022). https://doi.org/10.1007/s11665-021-06439-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-021-06439-z

Keywords

Navigation