Skip to main content
Log in

Improvement in Wear Resistance Performance of CuAl8Fe3 Single-Phase Aluminum Bronze via Slide Diamond Burnishing

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

Single-phase CuAl8Fe3 aluminum bronze is preferred material for many applications requiring good strength and high corrosion and wear resistance. Due to its lower aluminum content (below 8.5%), this alloy cannot be subjected to heat treatment. The effect of diamond burnishing (DB) on wear resistance performance of this bronze was studied via wear tests under boundary lubrication and dry friction conditions. Three groups of specimens were tested, each subjected to different finishing process: fine turning, DB with one pass and DB with six passes. The DB process with six passes provided the highest wear resistance under the condition of boundary lubrication friction and increased the wear resistance 5.1 times more than fine turning. DB with one pass resulted in the highest wear resistance under the dry friction condition and increased the wear resistance 1.75 times more than fine turning. It was established that the geometrical characteristics of surface texture are dominant under the condition of boundary lubrication friction. Conversely, the physical-mechanical characteristics of the surface layer dominate when the wear is under condition of dry friction. It was found that in addition to the known positive effects, DB provides suitable surface texture to improve the lubrication between the contact surfaces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Abbreviations

2D:

Two-dimensional

3D:

Three-dimensional

DB:

Diamond burnishing

OM:

Optical microscopy

SEM:

Scanning electron microscopy

SI:

Surface integrity

XRD:

X-ray diffraction

\(a_{{\text{c}}}\) :

Depth of cutting

\(A_{5}\) :

Elongation

\(A_{\alpha }\) :

Nominal contact area

\(c\) :

Thickness

\(d\) :

Diameter

\(E\) :

Young’s modulus

\(f\) :

Feed rate

\(F_{{\text{b}}}\) :

Burnishing force

\(h\) :

Linear wear

\(HV\) :

Vickers microhardness

\(i_{h}\) :

Intensity of linear wear

\(I_{h}\) :

Absolute wear resistance

\(L\) :

Friction path

\(m\) :

Mass wear

\(m_{0}\) :

Initial mass

\(m_{i}\) :

Mass after a certain friction path

\(n\) :

Number of passes

\(p_{a}\) :

Normal contact pressure

\(P\) :

Normal load

\(r\) :

Diamond insert radius

\(R_{i,j}\) :

Relative wear resistance

\(R_{0,2}\) :

Yield limit

\(R_{{\text{a}}}\) :

Arithmetic mean deviation

\(R_{m}\) :

Ultimate stress

\(S_{{\text{a}}}\) :

Arithmetic mean deviation

\(S_{{{\text{ku}}}}\) :

Kurtosis

\(S_{{\text{p}}}\) :

Maximum peak height

\(S_{q}\) :

Root-mean-square deviation

\(S_{{{\text{sk}}}}\) :

Skewness

\(S_{{\text{t}}}\) :

Total height

\(S_{{\text{v}}}\) :

Maximum valley depth

\(S_{z}\) :

Ten-point height

\(t\) :

Time

\(v\) :

Burnishing velocity

\(v_{{\text{c}}}\) :

Cutting velocity

\(\gamma\) :

Wear rate

\(\phi\) :

Angular size

\(\rho\) :

Density

References

  1. ASME B46.1-2009, Surface Texture (Surface Roughness, Waviness, and Lay), An American National Standard, 2009.

  2. W.P. Dong, P.J. Sullivan and K.J. Stout, Comprehensive Study of Parameters for Characterizing Three-Dimensional Surface Topography—III: Parameters for Characterizing Amplitude and Some Functional Properties, Wear, 1994, 178, p 29–43.

    Article  CAS  Google Scholar 

  3. M. Sedlacek, B. Podgornik and J. Vizintin, Correlation Between Standard Roughness Parameters Skewness and Kurtosis And Tribological Behaviour of Contact Surface, Tribol. Int., 2012, 48, p 102–112.

    Article  CAS  Google Scholar 

  4. B. Podgornik and J. Jerina, Surface Topography Effect on Galling Resistance of Coated and Uncoated Tool Steel, Surf. Coat Technol., 2012, 206, p 2792–2800.

    Article  CAS  Google Scholar 

  5. X. Shi, L. Wang and F. Qin, Relative Fatigue Life Prediction of High-Speed and Heavy-Load Ball Bearing Based on Surface Texture, Tribol. Int., 2016, 101, p 364–374.

    Article  Google Scholar 

  6. B.K. Prasad, Sliding Wear Response of a Bronze Bushing: Influence of Applied Load and Test Environment, J. Mater. Eng. Perform., 2012, 21, p 2155–2164.

    Article  CAS  Google Scholar 

  7. B.S. Ajay Vardhaman, M. Amarnath, J. Ramkumar and P.K. Rai, Experimental Investigations to Enhance the Tribological Performance of Engine Oil by Using Nano-boric Acid and Functionalized Multiwalled Carbon Nanotubes: A Comparative Study to Assess Wear in Bronze Alloy, J. Mater. Eng. Perform., 2018, 27, p 2782–2795.

    Article  CAS  Google Scholar 

  8. Q. Ahsan, A.S.M.A. Haseeb, E. Haque and J.P. Celis, Wear Failure of a Leaded Bronze Bearing: Correlation Between Plant Experience and Laboratory Wear Test Data, J. Mater. Eng. Perform., 2003, 12, p 304–311.

    Article  CAS  Google Scholar 

  9. J.P. Pandey and B.K. Prasad, Sliding Wear Response of a Leadedtin Bronze: Influence of the Counterface Material Characteristics, J. Mater. Eng. Perform., 1998, 7, p 122–129.

    Article  CAS  Google Scholar 

  10. M. Korzynski, Slide Diamond Burnishing, in Nonconventional Finishing Technologies, ed. by M. Korzynski (Polish Scientific Publishers PWN, Warsaw, 2013).

  11. J.T. Maximov, G.V. Duncheva, A.P. Anchev and M.D. Ichkova, Slide Burnishing—Review and Prospects, J. Adv. Manuf. Technol., 2019, 104, p 785–801.

    Article  Google Scholar 

  12. J.T. Maximov, G.V. Duncheva, A.P. Anchev and V.P. Dunchev, Slide Burnishing Versus Deep Rolling—a Comparative Analysis, J. Adv. Manuf. Technol., 2020, 110, p 1923–1939.

    Article  Google Scholar 

  13. H. Luo, J. Liu, L. Wang and Q. Zhong, Study of the Mechanism of the Burnishing Process with Cylindrical Polycrystalline Diamond Tools, J. Mater. Process. Technol., 2006, 180(1–3), p 9–16.

    Article  CAS  Google Scholar 

  14. H. Luo, J. Liu, L. Wang and Q. Zhong, The Effect of Burnishing Parameters on Burnishing Force and Surface Microhardness, Int. J. Adv. Manuf. Technol., 2006, 28(7–8), p 707–713.

    Article  Google Scholar 

  15. H. Luo, J. Liu and Q. Zhong, Investigation of the Burnishing Process with PCD Tool on Non-ferrous Metals, Int. J. Adv. Manuf. Technol., 2005, 25(5–6), p 454–459.

    Article  Google Scholar 

  16. C. Pang, H. Luo, Z. Zhang and Y. Ma, Precipitation Behavior and Grain Refinement of Burnishing Al–Zn–Mg Alloy, Progr. Nat. Sci. Mater. Int., 2018, 28, p 54–59.

    Article  CAS  Google Scholar 

  17. M. Szutkowska, D. Tobola and K. Czechowski, Burnishing of Aluminium Alloy Surface Using Diamond Matrix Composite Tools, Key Eng. Mater, 2015, 641, p 39–46.

    Article  Google Scholar 

  18. H. Tanaka, W. Ishii and K. Yanagi, Optimal Burnishing Conditions And Mechanical Properties of Surface Layer by Surface Modification Effect Induced of Applying Burnishing Process to Stainless Steel and Aluminum Alloy, J. Jpn. Soc. Technol. Plast, 2011, 52(605), p 726–730. ((in Japanese))

    Article  CAS  Google Scholar 

  19. R. Teimouri, S. Amini and A.B. Bami, Evaluation of Optimized Surface Properties and Residual Stress in Ultrasonic Assisted Ball Burnishing of AA6061-T6, Measurement, 2018, 116, p 129–139.

    Article  Google Scholar 

  20. G. Varga and V. Ferencsik, Investigation of the Influence of Different Burnishing Parameters on Shape Correctness and Residual Stresses, IOP Conf. Ser. Mater. Sci. Eng., 2018, 448, p 012016. https://doi.org/10.1088/1757-899X/448/1/012016

    Article  Google Scholar 

  21. X. Yu and L. Wang, Effect of Various Parameters on the Surface Roughness of an Aluminium Alloy Burnished with a Spherical Surfaced Polycrystalline Diamond Tool, Int. J. Mach. Tools Manuf., 1999, 39(3), p 459–469.

    Article  Google Scholar 

  22. U. Esme, Use of Grey Based Taguchi Method in Ball Burnishing Process for the Optimization of Surface Burnishing and Microhardness of AA7075 Aluminium Alloy, Mater. Technol., 2010, 44, p 129–135.

    CAS  Google Scholar 

  23. F. Gharbi, S. Sghaier, H. Hamdi and T. Benameur, Ductility Improvement of Aluminum 1050A Rolled Sheet by a Newly Designed Ball Burnishing Tool Device, Int. J. Adv. Manuf. Technol., 2012, 60(1–4), p p87-99.

    Article  Google Scholar 

  24. J.T. Maximov, A.P. Anchev, G.V. Duncheva, N. Ganev and K.F. Selimov, Influence of the Process Parameters on the surface Roughness, Micro-hardness, and Residual Stresses in Slide Burnishing of High-strength Aluminum Alloys, J. Braz. Soc. Mech. Sci. Eng., 2017, 39(8), p 3067–3078.

    Article  CAS  Google Scholar 

  25. J.T. Maximov, A.P. Anchev, V.P. Dunchev, N. Ganev, G.V. Duncheva and K.F. Selimov, Effect of Slide Burnishing Basic Parameters on Fatigue Performance of 2024-T3 High-strength Aluminium Alloy, Fatigue Fract. Eng. Mater. Struct., 2017, 40(11), p 1893–1904.

    Article  CAS  Google Scholar 

  26. J.T. Maximov, A.P. Anchev, G.V. Duncheva, N. Ganev, K.F. Selimov and V.P. Dunchev, Impact of Slide Diamond Burnishing Additional Parameters on Fatigue Behaviour of 2024-T3 Al Alloy, Fatigue Fract. Eng. Mater. Struct., 2019, 42(1), p 363–373.

    Article  CAS  Google Scholar 

  27. K. Czechowski and D. Tobola, Slide Finishing Burnishing of Metal Alloys and Metal Matrix Composites, Mechanik NR, 2017, 7, p 1–3.

    Google Scholar 

  28. A. Nestler and A. Schubert, Effect of Machining Parameters on Surface Properties in Slide Diamond Burnishing of Aluminium Matrix Composites, Mater. Today Proc., 2015, 2S, p S156–S161.

    Article  Google Scholar 

  29. P. Bednarski, D. Bialo, W. Brostow, K. Czechowski, W. Polowski, P. Rusek and D. Tobola, Improvement of Tribological Properties of Matrix Composites by Means of Slide Burnishing, Mater. Sci., 2013, 19(4), p 367–372.

    Google Scholar 

  30. D. He, B. Wang, J. Zhang, S. Liao and W.J. Deng, Investigation of Interference Effect on the Burnishing Process, Int. J. Adv. Manuf. Technol., 2018, 95, p 1–10.

    Article  Google Scholar 

  31. M. Korzynski and T. Zarski, Slide Diamond Burnishing Influence on Surface Stereometric Structure of AZ91 Alloy, Surf. Coat. Technol., 2016, 307, p 590–595.

    Article  CAS  Google Scholar 

  32. B.B. Buldum and S.C. Cagan, Study of Ball Burnishing Process on the Surface Roughness and Microhardness of AZ91D Alloy, Exp. Tech., 2018, 42(2), p 233–241.

    Article  Google Scholar 

  33. M. Okada, S. Terada, T. Miura, Y. Iwai, T. Takazawa, Y. Kataoka, T. Kihara and M. Otsu, Fundamental Burnishing Characteristics of Ni-based Alloy Using Coated Carbide Tool, Proc. Manuf., 2018, 15, p 1278–1283.

    Google Scholar 

  34. F.J. Shiou and Q.N. Banh, Development of an Innovative Small Ball-Burnishing Tool Embedded with a Load Cell, Int. J. Adv. Manuf. Technol., 2016, 87(1–4), p 31–41.

    Article  Google Scholar 

  35. N. Wannaprawat, A. Subhakom and S. Suranuntchai, Effects of Temperature and Strain Rate During Hot Compression of Manganese Aluminum Bronze. International Conference on Innovative Material Science and Technology (IMST) 2016, p. 346–352

  36. E. Khoroshko, A. Filippov, S. Tarasov, N. Shamarin, E. Moskvichev, S. Fortuna, D. Lychagin and E. Kolubaev, Strength and Ductility Improvement Through Thermomechanical Treatment of Wire-Feed Electron Beam Additive Manufactured Low Stacking Fault Energy (SFE) Aluminum Bronze, Metals, 2020, 10, p 1568. https://doi.org/10.3390/met10121568

    Article  CAS  Google Scholar 

  37. C. Wang, C. Jiang, Z. Chai, M. Chen, L. Wang and V. Ji, Estimation of Microstructure and Corrosion Properties of Peened Nickel Aluminum Bronze, Surf. Coat. Technol., 2017, 313, p 136–142.

    Article  CAS  Google Scholar 

  38. S. Thapliyal and D.K. Dwivedi, Microstructure Evolution and Tribological Behavior of the Solid Lubricant Based Surface Composite of Cast Nickel Aluminum Bronze Developed by Friction Stir Processing, J. Mater. Process. Technol., 2016, 238, p 30–38.

    Article  CAS  Google Scholar 

  39. J.T. Maximov, G.V. Duncheva, V.P. Dunchev and A.P. Anchev, Different Strategies for Finite Element Simulations of Static Mechanical Surface Treatment Processes—a Comparative Analysis, J. Braz. Soc. Mech. Sci. Eng., 2021, 43, p 371. https://doi.org/10.1007/s40430-021-03085-3

    Article  Google Scholar 

  40. J. Zhang and Z.J. Pei, Characterization Methods for Surface Integrity, in Surface Integrity in Mashining, ed. by J. Paulo, (Springer, Verlag London Limited, 2010) e-ISBN 978-1-84-882-974-2.

  41. W. Grzesik, J. Rech and K. Zak, High-precision Finishing Hard Steel Surfaces Using Cutting, Abrasive and Burnishing Operations, Procedia Manuf., 2015, 1, p 619–627.

    Article  Google Scholar 

  42. S. Hu, N. Brunetiere, W. Huang, X. Liu and Y. Wang, Continuous Separating Method for Characterizing and Reconstructing bi-Gaussian Stratified Surfaces, Tribol. Int., 2016, 102, p 454–462.

    Article  Google Scholar 

  43. X. Shi, L. Wang and F. Qin, Relative Fatigue Life Prediction of High-Speed and Heavy-Load Ball Bearing Based on Surface Texture, Tribol. Int., 2016, 102, p 364–374.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the European Regional Development Fund within the OP “Science and Education for Smart Growth 2014-2020,” Project CoC “Smart Mechatronics, Eco- and Energy Saving Systems and Technologies,” No BG05M2OP001-1.002-0023

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. V. Duncheva.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Duncheva, G.V., Maximov, J.T., Anchev, A.P. et al. Improvement in Wear Resistance Performance of CuAl8Fe3 Single-Phase Aluminum Bronze via Slide Diamond Burnishing. J. of Materi Eng and Perform 31, 2466–2478 (2022). https://doi.org/10.1007/s11665-021-06389-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-021-06389-6

Keywords

Navigation