Skip to main content
Log in

Intergranular Corrosion Resistance of Stainless Steel Coating with Ultralow Dilution Rates Manufactured by Tungsten Arc Welding Technology

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

The deposition of austenitic stainless steel coatings on high-strength low-alloy steel surfaces was a common method in engineering. However, excessive dilution of the substrate resulting in degradation of the coating properties is a constant challenge. In this paper, tungsten argon arc welding (TIG) technology was optimized based on the response surface method to produce a very low dilution (4%) stainless steel coating on the surface of Q355 steel. The intergranular corrosion sensitivity of the two coatings was tested by the double-loop electrochemical potentiodynamic reactivation technique. The DOS value of the coating made by the TIG technique (6.83%) is lower than that of the coating made by flux-cored arc welding (9.31%). The improved intergranular corrosion resistance is attributed to the dilution rate, grain size, grain boundary type, and inclusions. A technique of manufacturing low dilution coatings is provided, achieving a 50% savings in welding material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data Availability

The datasets supporting the conclusions of this article are included within the article and its additional files.

References

  1. P. Luchtenberg, P.T. de Campos, P. Soares, C.A.H. Laurindo, O. Maranho and R.D. Torres, Effect of Welding Energy on the Corrosion and Tribological Properties of Duplex Stainless Steel Weld Overlay Deposited by GMAW/CMT Process, Surf. Coat. Technol., 2019, 375, p 688–693. https://doi.org/10.1016/j.surfcoat.2019.07.072

    Article  CAS  Google Scholar 

  2. M. Moradi, M.K. Moghadam and M. Kazazi, Improved Laser Surface Hardening of AISI 4130 Low Alloy Steel with Electrophoretically Deposited Carbon Coating, Optik, 2019, 178, p 614–622.

    Article  CAS  Google Scholar 

  3. F. Weng, S. Gao, J. Jiang, J. Wang and P. Guo, A Novel Strategy to Fabricate thin 316L Stainless Steel Rods by Continuous Directed Energy Deposition in Z Direction, Addit. Manuf., 2019, 27, p 474–481.

    CAS  Google Scholar 

  4. H. Zhang, C. Zhang, Q. Wang, C. Wu, S. Zhang, J. Chen and A.O. Abdullah, Effect of Ni Content on Stainless Steel Fabricated by Laser Melting Deposition, Opt. Lasers. Technol., 2018, 101, p 363–371.

    Article  CAS  Google Scholar 

  5. S. Shukla, A.P. Patil, A.P. Kawale, R.K. Haldkar, A. Dahiwale and A. Bansod, Effect of Grain Refinement on Sensitization of High Manganese Austenitic Stainless Steel, Materials Today: Proceedings, 2021, 44, p 2802–2807. https://doi.org/10.1016/j.matpr.2020.12.833

    Article  CAS  Google Scholar 

  6. W. Wang, Y. Hu, M. Zhang and H. Zhao, Microstructure and Mechanical Properties of Dissimilar Friction Stir Welds in Austenitic-Duplex Stainless Steels, Mater. Sci. Eng., A, 2020, 787, p 139499. https://doi.org/10.1016/j.msea.2020.139499

    Article  CAS  Google Scholar 

  7. Q. Xiao, C. Jang, C. Kim, H. Kim, J. Chen and H.B. Lee, Corrosion Behavior of Stainless Steels in Simulated PWR Primary Water: The Effect of Composition and Matrix Phases, Corrosion Sci., 2020, 177, 108991. https://doi.org/10.1016/j.corsci.2020.108991

    Article  CAS  Google Scholar 

  8. S.-X. Li, Y.-N. He, S.-R. Yu and P.-Y. Zhang, Evaluation of the Effect of Grain Size on Chromium Carbide Precipitation and Intergranular Corrosion of 316L Stainless Steel, Corrosion Sci., 2013, 66, p 211–216. https://doi.org/10.1016/j.corsci.2012.09.022

    Article  CAS  Google Scholar 

  9. J. Li, H. Li, Y. Liang, P. Liu, L. Yang and Y. Wang, Effects of Heat Input and Cooling Rate During Welding on Intergranular Corrosion Behavior of High Nitrogen Austenitic Stainless Steel Welded Joints, Corrosion Sci., 2020, 166, p 108445. https://doi.org/10.1016/j.corsci.2020.108445

    Article  CAS  Google Scholar 

  10. X. Qin, X. Guo, J. Lu, L. Chen, J. Qin and W. Lu, Erosion-Wear and Intergranular Corrosion Resistance Properties of AISI 304L Austenitic Stainless Steel after Low-Temperature Plasma Nitriding, J. Alloy. Compd., 2017, 698, p 1094–1101. https://doi.org/10.1016/j.jallcom.2016.12.164

    Article  CAS  Google Scholar 

  11. Z. Lai, P. Bi, L. Wen, Y. Xue and Y. Jin, Local Electrochemical Properties of Fusion Boundary Region in SA508-309L/308L Overlay Welded Joint, Corrosion Sci., 2019, 155, p 75–85. https://doi.org/10.1016/j.corsci.2019.04.021

    Article  CAS  Google Scholar 

  12. S.K. Pradhan, P. Bhuyan and S. Mandal, Individual and Synergistic Influences of Microstructural Features on Intergranular Corrosion Behavior in Extra-low Carbon type 304L Austenitic Stainless Steel, Corrosion Sci., 2018, 139, p 319–332. https://doi.org/10.1016/j.corsci.2018.05.014

    Article  CAS  Google Scholar 

  13. A. La Fontaine, H.-W. Yen, P. Trimby, S. Moody, S. Miller, M. Chensee, S. Ringer and J. Cairney, Martensitic Transformation in an Intergranular Corrosion Area of Austenitic Stainless Steel During Thermal Cycling, Corrosion Sci., 2014, 85, p 1–6. https://doi.org/10.1016/j.corsci.2014.04.048

    Article  CAS  Google Scholar 

  14. N.V. Rao, G.M. Reddy and S. Nagarjuna, Weld Overlay Cladding of High Strength Low Alloy Steel with Austenitic Stainless Steel-Structure and Properties, Mater. Des., 2011, 32(4), p 2496–2506. https://doi.org/10.1016/j.matdes.2010.10.026

    Article  CAS  Google Scholar 

  15. H. Yousefi Azad, S.H. Mousavi Anijdan and H. Najafi, The Effect of PWHT on the Microstructural Evolution, Carbides Formation and Mechanical Properties of a Nb Containing Martensitic Heat Resistance Steel Used in Gas Turbine, Mater. Sci. Eng., A, 2020, 793, p 139810. https://doi.org/10.1016/j.msea.2020.139810

    Article  CAS  Google Scholar 

  16. G. Dak and C. Pandey, A Critical Review on Dissimilar Welds Joint Between Martensitic and Austenitic Steel for Power Plant Application, J. Manuf. Process., 2020, 58, p 377–406. https://doi.org/10.1016/j.jmapro.2020.08.019

    Article  Google Scholar 

  17. M. Shamanian, A. Eghlimi, M. Eskandarian and J.A. Szpunar, Interface Microstructure Across Cladding of Super Duplex Stainless Steel with Austenitic Stainless Steel Buffer Layer, Surf. Coat. Technol., 2014, 259, p 532–542. https://doi.org/10.1016/j.surfcoat.2014.10.034

    Article  CAS  Google Scholar 

  18. A. Eghlimi, M. Shamanian, M. Eskandarian, A. Zabolian, M. Nezakat and J.A. Szpunar, Evaluation of Microstructure and Texture Across the Welded Interface of Super Duplex Stainless Steel and High Strength Low Alloy Steel, Surf. Coat. Technol., 2015, 264, p 150–162. https://doi.org/10.1016/j.surfcoat.2014.12.060

    Article  CAS  Google Scholar 

  19. A. Eghlimi, M. Shamanian, M. Eskandarian, A. Zabolian and J.A. Szpunar, Characterization of Microstructure and Texture Across Dissimilar Super Duplex/Austenitic Stainless Steel Weldment Joint by Austenitic Filler Metal, Mater. Charact., 2015, 106, p 208–217. https://doi.org/10.1016/j.matchar.2015.05.036

    Article  CAS  Google Scholar 

  20. X. Di, Z. Zhong, C. Deng, D. Wang and X. Guo, Microstructural Evolution of Transition Zone of clad X70 with Duplex Stainless Steel, Mater. Des., 2016, 95, p 231–236. https://doi.org/10.1016/j.matdes.2016.01.087

    Article  CAS  Google Scholar 

  21. Y. Zhai, L. Yang, T. He and Y. Liu, Weld Morphology and Microstructure During Simulated Local Dry Underwater FCTIG, J. Mater. Process. Technol., 2017, 250, p 73–80. https://doi.org/10.1016/j.jmatprotec.2017.07.010

    Article  CAS  Google Scholar 

  22. L. Yang, Y. Wang, T. Sun, Y. Huang, Y. Zhai and T. He, Microstructure and Mechanical Properties of FCTIG-Welded DH36 Steel with Rutile-Type and Basic-Type Flux Cored Wires, J. Mater. Process. Technol., 2020, 275, 116363. https://doi.org/10.1016/j.jmatprotec.2019.116363

    Article  CAS  Google Scholar 

  23. M. Ragavendran, N. Chandrasekhar, R. Ravikumar, R. Saxena, M. Vasudevan and A.K. Bhaduri, Optimization of Hybrid Laser–TIG Welding of 316LN Steel Using Response Surface Methodology (RSM), Opt. Lasers. Eng., 2017, 94, p 27–36. https://doi.org/10.1016/j.optlaseng.2017.02.015

    Article  Google Scholar 

  24. N.R. Baddoo, Stainless Steel in Construction: A Review of Research, Applications, Challenges and Opportunities, J. Constr. Steel. Res., 2008, 64(11), p 1199–1206. https://doi.org/10.1016/j.jcsr.2008.07.011Get

    Article  Google Scholar 

  25. J. Verma and R.V. Taiwade, Effect of Welding Processes and Conditions on the Microstructure, Mechanical Properties and Corrosion Resistance of Duplex Stainless Steel Weldments—A Review, J. Manuf. Process., 2017, 25, p 134–152. https://doi.org/10.1016/j.jmapro.2016.11.003

    Article  Google Scholar 

  26. F. Mas, C. Tassin, F. Roch, M. Yescas, P. Todeschini and Y. Bréchet, Growth Morphologies and Primary Solidification Modes in a Dissimilar Weld Between a Low-Alloy Steel and an Austenitic Stainless Steel, Metals, 2018, 8(4), p 284.

    Article  Google Scholar 

  27. Y. Wu and B. Patchett, Formation of Crack-Susceptible Structures of Weld Overlay of Corrosion Resistant Alloys, Mater. Perform. Sulphur Energy, 1992, 1992, p 283–295.

    Google Scholar 

  28. B.O. Okonkwo, H. Ming, J. Wang, F. Meng, X. Xu and E.-H. Han, Microstructural Characterization of Low Alloy Steel A508–309/308L Stainless Steel Dissimilar Weld Metals, Int. J. Press. Ves. Pip., 2021, 190, p 104297.

    Article  CAS  Google Scholar 

  29. T. Nelson, J. Lippold and M. Mills, Nature and Evolution of the Fusion Boundary in Ferritic-Austenitic Dissimilar Metal Welds—Part 2: On-Cooling Transformations, Welding Research, 2000, 10, p 267–277.

    Google Scholar 

  30. H. Kokawa, M. Shimada, M. Michiuchi, Z.J. Wang and Y.S. Sato, Arrest of Weld-Decay in 304 Austenitic Stainless Steel by Twin-Induced Grain Boundary Engineering, Acta Mater., 2007, 55(16), p 5401–5407. https://doi.org/10.1016/j.actamat.2007.06.005

    Article  CAS  Google Scholar 

  31. M. Michiuchi, H. Kokawa, Z.J. Wang, Y.S. Sato and K. Sakai, Twin-Induced Grain Boundary Engineering for 316 Austenitic Stainless Steel, Acta Mater., 2006, 54(19), p 5179–5184. https://doi.org/10.1016/j.actamat.2006.06.030

    Article  CAS  Google Scholar 

  32. V. Randle, Twinning-Related Grain Boundary Engineering, Acta Mater., 2004, 52(14), p 4067–4081. https://doi.org/10.1016/j.actamat.2004.05.031

    Article  CAS  Google Scholar 

  33. K.S. de Assis, A.C. Rocha, I.C.P. Margarit-Mattos, F.A.S. Serra and O.R. Mattos, Practical Aspects on the Use of On-site Double Loop Electrochemical Potentiodynamic Reactivation Technique (DL-EPR) for Duplex Stainless Steel, Corrosion Sci., 2013, 74, p 250–255. https://doi.org/10.1016/j.corsci.2013.04.050

    Article  CAS  Google Scholar 

  34. S. Rahimi, D.L. Engelberg and T.J. Marrow, A New Approach for DL-EPR Testing of Thermo-Mechanically Processed Austenitic Stainless Steel, Corrosion Sci., 2011, 53(12), p 4213–4222. https://doi.org/10.1016/j.corsci.2011.08.033

    Article  CAS  Google Scholar 

  35. S. Kobayashi, R. Kobayashi and T. Watanabe, Control of Grain Boundary Connectivity Based on Fractal Analysis for Improvement of Intergranular Corrosion Resistance in SUS316L Austenitic Stainless Steel, Acta Mater., 2016, 102, p 397–405. https://doi.org/10.1016/j.actamat.2015.08.075

    Article  CAS  Google Scholar 

  36. J. Zhang, L. Xu, Y. Han, L. Zhao and B. Xiao, New perspectives on the Grain Boundary Misorientation Angle Dependent Intergranular Corrosion of Polycrystalline Nickel-Based 625 Alloy, Corrosion Sci., 2020, 172, p 108718. https://doi.org/10.1016/j.corsci.2020.108718

    Article  CAS  Google Scholar 

  37. P. Schmuki, H. Hildebrand, A. Friedrich and S. Virtanen, The Composition of the Boundary Region of MnS Inclusions in Stainless Steel and its Relevance in Triggering Pitting Corrosion, Corrosion Sci., 2005, 47(5), p 1239–1250. https://doi.org/10.1016/j.corsci.2004.05.023

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work is supported by the National Natural Science Foundation of China under Grant No. 51875403, China Postdoctoral Science Foundation under Grant 2020M670651, and State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology.

Author information

Authors and Affiliations

Authors

Contributions

Yaowei Wang was involved in conceptualization, methodology, formal analysis, Writing—original draft. Lijun Yang contributed to project administration, funding acquisition. Yiming Huang was involved in software, Writing—review & editing. Lixin Wang contributed to investigation, visualization.

Corresponding authors

Correspondence to Yiming Huang or Lijun Yang.

Ethics declarations

Conflict of interest

No conflict of interest exists in the submission of this manuscript, and the manuscript has been approved by all authors for publication.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 277 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Huang, Y., Wang, L. et al. Intergranular Corrosion Resistance of Stainless Steel Coating with Ultralow Dilution Rates Manufactured by Tungsten Arc Welding Technology. J. of Materi Eng and Perform 31, 2445–2456 (2022). https://doi.org/10.1007/s11665-021-06358-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-021-06358-z

Keywords

Navigation