Skip to main content
Log in

Internal Damage Mechanism and Deformation Process Window of a Free-Cutting Stainless Steel Bar Rolled by Three-Roll Planetary Mill

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

In order to determine the deformation process window and inquire the cause of internal cracks and voids, three-roll planetary rolling process was modeled by three-dimensional finite element method, and internal cracks and voids were investigated by real rolling of a bismuth-containing austenitic stainless steel bar. It shows that improper process parameters will lead to cracks and voids in the rolled bar. The Brozzo ductile fracture criteria revised can be used to determine the damage factor. The deformation process window to avoid internal cracks and voids can be described by rolling elongation and temperature. The three positive principal stresses in the center of the rolled bar, the alternating stress caused by periodically discontinuous contact between the rolls and the rolled piece, and the uneven radial strain distribution can be counted to be the main reasons for internal cracks and voids in the rolled bar. This study shows that the elongation has an upper limitation for avoiding internal cracks and voids in the bismuth-containing austenitic stainless steel bar rolled by three-roll planetary mill.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. S. Rhode, V. Kain, V.S. Raja, and G.J. Abraham, Factors Affecting Corrosion Behavior of Inclusion Containing Stainless Steels: A Scanning Electrochemical Microscopic Study, Mater. Charact., 2013, 77, p 109–115.

    Article  CAS  Google Scholar 

  2. L. Zhuang and W. Di, Effect of Free-Cutting Additives on Machining Characteristics of Austenitic Stainless Steels, J. Mater. Sci. Technol., 2010, 26, p 839–844.

    Article  Google Scholar 

  3. W. Di and L. Zhuang, A New Pb-Free Machinable Austenitic Stainless Steel, J. Iron Steel Res. Int., 2010, 17, p 59–63.

    Google Scholar 

  4. Z. Yongjun, Z. Chen, W. Lifeng, and Z. Huanchun, Development of Free Cutting Steel for Machine Structure without Lead, Mater. Rev., 2005, 19, p 68–71.

    Google Scholar 

  5. D. Mathilde, K. Hyoun-Ee, S. Vladimir, D. Sergey, and E. Yuri, Improving the Mechanical Properties of Pure Magnesium by Three-Roll Planetary Milling, Mater. Sci. Eng. A, 2014, 612, p 287–292.

    Article  Google Scholar 

  6. B. Romantsev, A. Goncharuk, A. Aleshchenko, Y. Gamin, and M. Mintakhanov, Development of Multipass Skew Rolling Technology for Stainless Steel and Alloy Pipes’ Production, Int. J. Adv. Manuf. Technol., 2018, 97, p 3223–3230.

    Article  Google Scholar 

  7. W. Yali, M. Andrey, D. Mathilde, L. Rimma, K. Hyoun-ee, W. Jingtao et al., Gradient Structure Produced by Three Roll Planetary Milling: Numerical Simulation and Microstructural Observations, Mater. Sci. Eng. A, 2015, 639, p 165–172.

    Article  Google Scholar 

  8. F. Yabo, C. Jing, and C. Zhiqiang, Cracks of Cu-Cr-Zr Alloy Bars Under Planetary Rolling, Rare Metal Mater. Eng., 2015, 44, p 567–570.

    Article  Google Scholar 

  9. M.M. Skripalenko, S.P. Galkin, S. Her-Jae, B.A. Romantsev, H. Tran-Ba, M.N. Skripalenko et al., Prediction of Potential Fracturing during Radial-Shear Rolling of Continuously Cast Copper Billets by Means of Computer Simulation, Metallurgist, 2019, 62, p 849–856.

    Article  CAS  Google Scholar 

  10. L. Sheng-Zhi, M. Wen-Hua, H. Lan-Wei, and D. Bo, Research on the Tendency of Inner Crack During 3-Roll Skew Rolling Process of Round Billets, Adv. Mater. Res., 2011, 145, p 238–242.

    Google Scholar 

  11. Y.L. Wang, A. Molotnikov, M. Diez, R. Lapovok, H. Kime, J.T. Wang et al., Gradient Structure Produced by Three Roll Planetary Milling: Numerical Simulation and Microstructural Observations, Mater. Sci. Eng. A, 2015, 639, p 165–172.

    Article  CAS  Google Scholar 

  12. X. Wenchen, W. He, M. Hao, and S. Debin, Damage Evolution and Ductile Fracture Prediction During Tube Spinning of Titanium Alloy, Int. J. Mech. Sci., 2018, 135, p 226–239.

    Article  Google Scholar 

  13. F. Freudenthal, The Inelastic Behavior of Solids, Wiley, New York, 1950.

    Google Scholar 

  14. M.G. Cockroft and D.J. Latham, Ductile and Workability of Metals, J. Inst. Met., 1968, 96, p 33–39.

    Google Scholar 

  15. P. Brozzo, B. DeLuca, and R. Rendina, A new method for the prediction of formability limits in metal sheets, in Proceedings of the Seventh Biennial Conference of the International Deep Drawing Research Group (1972)

  16. S. Xuedao, L. Guoping, and Z. Wangming, Prediction of the Central Defect Location for Multi-Wedge Cross Wedge Rolling Forming Automobile Semi-Axle, Appl. Sci. Technol., 2012, 39, p 45–48.

    Google Scholar 

  17. F.A. McClintock, A Criterion for Ductile Fracture by the Growing of Holes, J. Appl. Mech., 1968, 35, p 363–371.

    Article  Google Scholar 

  18. J.R. Rice and D.M. Tracey, On the Ductile Enlargement of Voids in Triaxial Stress Fields, J. Mech. Phys. Solids, 1969, 17, p 201–217.

    Article  Google Scholar 

  19. Y. Lou, H. Huh, S. Lim, and K. Pack, New Ductile Fracture Criterion for Prediction of Fracture Forming Limit Diagrams of Sheet Metals, Int. J. Solids Struct., 2012, 49, p 3605–3615.

    Article  CAS  Google Scholar 

  20. N. Park, H. Huh, S.J. Lim, Y. Lou, Y.S. Kang, and M.H. Seo, Fracture-based Forming Limit Criteria for Anisotropic Materials in Sheet Metal Forming, Int. J. Plast., 2017, 96, p 1–35.

    Article  Google Scholar 

  21. Y.B. Bao and T. Wierzbicki, On the Cut-Off Value of Negative Triaxiality for Fracture, Eng. Fract. Mech., 2005, 72, p 1049–1069.

    Article  Google Scholar 

  22. S. Basak and S.K. Panda, Failure Strains of Anisotropic Thin Sheet Metals: Experimental Evaluation and Theoretical Prediction, Int. J. Mech. Sci., 2019, 151, p 356–374.

    Article  Google Scholar 

  23. Z. Pater, J. Tomczak, and T. Bulzak, Rotary Compression as a New Calibration Test for Prediction of a Critical Damage Value, J. Mater. Res. Technol., 2020, 9, p 5487–5498.

    Article  CAS  Google Scholar 

  24. Z. Pater, J. Tomczak, T. Bulzak, L. Wojcik, and P. Walczuk, Assessment of Ductile Fracture Criteria with Respect to Their Application in the Modeling of Cross Wedge Rolling, J. Mater. Process. Technol., 2020, 278, p 1–11.

    Article  Google Scholar 

  25. Z. Jihua and G. Kezhi, Deformation Resistance of Alloy Structural Steel, J. Univ. Sci. Technol. B, 1986, 4, p 50–56.

    Google Scholar 

  26. Y.-M. Hwang, W.M. Tsai, F.H. Tsai, and I. Her, Analytical and Experimental Study on the Spiral Marks of the Rolled Product During Three-Roll Planetary Rolling Processes, Int. J. Mach. Tool. Manuf., 2006, 46, p 1555–1562.

    Article  Google Scholar 

  27. Wu. Shyue-Jian, Y.-M. Hwang, and M.-H. Chang, A Three-Dimensional Finite Element Analysis of the Three-Roll Planetary Mill, J. Mater. Process. Technol., 2002, 123, p 336–345.

    Article  Google Scholar 

  28. C.-K. Shih and C. Hung, Experimental and Numerical Analyses on Three-Roll Planetary Rolling Process, J. Mater. Process. Technol., 2003, 142, p 702–709.

    Article  Google Scholar 

  29. B. Li, S.H. Zhang, G.L. Zhang, H.Y. Zhang, and H.Q. Zhang, Microstructure Simulation of Copper Tube and Its Application in Three Roll Planetary Rolling, Mater. Sci. Technol., 2007, 23, p 715–722.

    Article  CAS  Google Scholar 

  30. S.-D. Hu, Y.-N. Jiang, C. Zhou, L.-X. Li, X.-Y. Wang, and C. Wang, Prediction and Prevention of Cracks in Free-Cutting Stainless Steel Bar Forming, Metall. Mater. Trans. B, 2020, 51B, p 1687–1696.

    Article  Google Scholar 

  31. M. Hao, X. Wenchen, J. BoCheng, S. Debin, and R.N. Steven, Damage Evaluation in Tube Spinnability Test with Ductile Fracture Criteria, Int. J. Mech. Sci., 2015, 100, p 99–111.

    Article  Google Scholar 

  32. S. Dobatkin, S. Galkin, Y. Estrin, V. Serebryany, M. Diez, N. Martynenko et al., Grain Refinement, Texture, and Mechanical Properties of a Magnesium Alloy After Radial-Shear Rolling, J. Alloys Comp., 2019, 774, p 969–979.

    Article  CAS  Google Scholar 

  33. P. Montmitonett, P. Gratacos, and R. Ducloux, Application of Anisotropic Viscoplastic Behaviour in 3D Finite-Element Simulations of Hot Rolling, J. Mater. Process. Technol., 1996, 58, p 201–211.

    Article  Google Scholar 

  34. T.K. Akopyan, Y.V. Gamin, S.P. Galkin, A.S. Prosviryakov, A.S. Aleshchenko, M.A. Noshin et al., Radial-Shear Rolling of High-Strength Aluminum Alloys: Finite Element Simulation and Analysis of Microstructure and Mechanical Properties, Mater. Sci. Eng. A, 2020, 786, p 1–10.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lixin Li.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, L., Li, J. & Ye, B. Internal Damage Mechanism and Deformation Process Window of a Free-Cutting Stainless Steel Bar Rolled by Three-Roll Planetary Mill. J. of Materi Eng and Perform 31, 1187–1194 (2022). https://doi.org/10.1007/s11665-021-06234-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-021-06234-w

Keywords

Navigation