Skip to main content
Log in

Influence of Aging Treatment on the Corrosion Susceptibility and Mechanical Properties of Peak-Aged 2195 Al-Cu-Li Alloy

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

The microstructure, mechanical properties, and intergranular corrosion (IGC) susceptibility of peak-aged 2195 Al-Cu-Li alloy at different temperatures were investigated. The results showed that the microhardness and tensile properties of the alloy were significantly improved by increasing the aging temperature, while the ductility and corrosion resistance decreased. The medium-temperature aged sample could obtain optimal mechanical properties and acceptable corrosion resistance in comparison with other samples. A competitive relationship was observed between T1 (Al2CuLi) and θ' (Al2Cu) phases during aging treatment, where a higher aging temperature promoted nucleation of the T1 phase, which played the dominant role in strengthening the alloy. However, the θ' phase precipitation was inhibited. The improvement of corrosion susceptibility was mainly related to fine intragranular precipitates, continuous grain boundary precipitates, and a narrow precipitate-free zone. Furthermore, the relationship between the open circuit potential and the IGC sensitivity was discussed to determine the corrosion mechanism of the alloy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. K. Yan, T.Y. Wang and H.M. Liang, Effects of Rotation Speed on Microstructure and Mechanical Properties of 2060 Al-Cu-Li Alloy in Friction Stir Welding, J. Mater. Eng. Perform., 2018, 11, p 5803–5814.

    Article  Google Scholar 

  2. K.R. Emil, D. Uyime and A. Victor, The Effect of Acid Pickling on the Corrosion Behavior of a Cerium Conversion-Coated AA2198-T851 Al-Cu-Li Alloy, J. Mater. Eng. Perform., 2020, 1, p 167–174.

    Google Scholar 

  3. H. Ning, J.F. Li and P.C. Ma, Evolution of Aging Precipitates in an Al-Cu-Li Alloy with 1.5 wt% Li Concentration, Vacuum., 2020, 182, p 109677.

    Article  CAS  Google Scholar 

  4. Y.X. Wang, X.W. Ma and H.K. Xi, Effects of Pre-stretching and Aging Treatments on Microstructure, Mechanical Properties, and Corrosion Behavior of Spray-Formed Al-Cu-Li Alloy 2195, J. Mater. Eng. Perform., 2020, 10, p 6960–6973.

    Article  CAS  Google Scholar 

  5. H.Y. Li, W. Kang and X.C. Lu, Effect of Age-forming on Microstructure, Mechanical and Corrosion Properties of a novel Al–Li alloy, J. Alloys. Compd., 2015, 640, p 210–218.

    Article  CAS  Google Scholar 

  6. J.S. Tao, L. Zhang and G.H. Wu, Effect of Heat Treatment on the Microstructure and Mechanical Properties of Extruded Al-4Cu-1Li-0.4Mg-0.4Ag-0.18Zr Alloy, Mater. Sci. Eng. A., 2018, 717, p 11–19.

    Article  CAS  Google Scholar 

  7. X.X. Chen, X.W. Ma and H.K. Xi, Effects of Heat Treatment on the Microstructure and Mechanical Properties of Extruded 2196 Al-Cu-Li Alloy, Mater. Des., 2020, 192, p 108746.

    Article  CAS  Google Scholar 

  8. V.A. Peters, B. Gault and F.D. Geuser, Microstructural Evolution during Ageing of Al-Cu-Li-x Alloys, Acta Mater., 2014, 66, p 199–208.

    Article  Google Scholar 

  9. J.F. Li, Z.H. Ye and D.Y. Liu, Influence of Pre-deformation on Aging Precipitation Behavior of Three Al–Cu–Li Alloys, Acta. Metall. Sin. (Engl. Lett.), 2017, 30, p 133–145.

    Article  CAS  Google Scholar 

  10. A. Medjahed, A. Henniche and M. Derradji, Effects of Cu/Mg Ratio on the Microstructure, Mechanical and Corrosion Properties of Al-Cu-Li-Cu-Mg-X Alloys, Mater. Sci. Eng. A., 2018, 718, p 241–249.

    Article  CAS  Google Scholar 

  11. A.T. Chen, G.H. Wu and L. Zhang, Microstructural Characteristics and Mechanical Properties of Cast Al-3Li-xCu-0.2Zr Alloy, Mater. Sci. Eng. A., 2016, 677, p 29–40.

    Article  CAS  Google Scholar 

  12. B. Chen, C.H. Li and S.C. He, Corrosion Behavior of 2099 Al-Cu-Li Alloy in NaCl Aqueous Solution, J. Mater. Res., 2014, 12, p 1344–1353.

    Article  Google Scholar 

  13. C.S. Lee and P.I. Choi, Stress Corrosion Cracking Behavior of Al-Cu-Li-Mg-Zr(-Ag) Alloys, Met. Mater. Int., 2002, 8, p 191–196.

    Article  CAS  Google Scholar 

  14. M. Guérin, E. Andrieu and G. Odemer, Effect of Varying Conditions of Exposure to an Aggressive Medium on the Corrosion Behavior of the 2050 Al-Cu-Li Alloy, Corrosion Sci., 2014, 85, p 455–470.

    Article  Google Scholar 

  15. V. Proton, J. Alexis and E. Andrieu, The Influence of Artificial Ageing on the Corrosion Behaviour of a 2050 Aluminium-Copper-Lithium Alloy, Corrosion Sci., 2014, 80, p 494–502.

    Article  CAS  Google Scholar 

  16. Y. Lin, C. Lu and C.Y. Wei, Effect of Aging Treatment on Microstructures, Tensile properties and Intergranular Corrosion Behavior of Al-Cu-Li Alloy, Mater. Charact., 2018, 141, p 163–168.

    Article  CAS  Google Scholar 

  17. Y. Ma, X. Zhou and Y. Liao, Localised Corrosion in AA 2099–T83 Aluminium-Lithium Alloy: The Role of Grain Orientation, Corrosion Sci., 2016, 107, p 41–48.

    Article  CAS  Google Scholar 

  18. X.X. Zhang, X.R. Zhou and T. Hashimoto, Corrosion Behaviour of 2A97-T6 Al-Cu-Li alloy: The Influence of Non-uniform Precipitation, Corrosion Sci., 2018, 132, p 1–8.

    Article  CAS  Google Scholar 

  19. U. Donatus, M. Terada and C.R. Ospina, On the AA2198-T851 Alloy Microstructure and its Correlation with Localized Corrosion Behavior, Corrosion Sci., 2018, 131, p 300–309.

    Article  CAS  Google Scholar 

  20. P.S. Chen and B.N. Bhat, Time-Temperature-Precipitation Behavior in Al-Li Alloy 2195, NASA technical report, 211548, 2002.

  21. H.Y. Li, D.S. Huang and W. Kang, Effect of Different Aging Processes on the Microstructure and Mechanical Properties of a Novel Al-Cu-Li Alloy, J. Mater. Sci. Technol., 2016, 32, p 1049–1053.

    Article  CAS  Google Scholar 

  22. H.J. Kim and M. Niinomi, The Role of Microstructures on the Strengthening Mechanisms of a Thermomechanically Processed 2091 Al–Li alloy, Mater. Sci. Eng. A., 2000, 284, p 14–24.

    Article  Google Scholar 

  23. B. Jiang, F.H. Cao, H.S. Wang, D.Q. Yi and Y. Jiang, Effect of Aging Time on the Microstructure Evolution and Mechanical Property in an Al-Cu-Li Alloy Sheet, Mater. Sci. Eng. A., 2019, 740–741, p 157–164.

    Article  Google Scholar 

  24. B. Decreus, A. Deschamps and F. Geuser, Influence of Natural Ageing and Deformation on Precipitation in an Al-Cu-Li Alloy, Adv. Eng. Mater., 2013, 11, p 1082–1085.

    Article  Google Scholar 

  25. S.F. Zhang, W.D. Zeng and W.H. Yang, Ageing Response of a Al–Cu–Li 2198 Alloy, Mater. Des., 2014, 63, p 368–374.

    Article  CAS  Google Scholar 

  26. J.F. Li, J.L. Huang and D.Y. Liu, Distribution and Evolution of Aging Precipitates in Al-Cu-Li Alloy with High Li Concentration, Trans. Nonferrous Met. Soc. China., 2019, 29, p 15–24.

    Article  CAS  Google Scholar 

  27. X.X. Zhang, Y.B. Jiao and Y. Yu, Intergranular Corrosion in AA2024-T3 Aluminium Alloy: The Influence of Stored Energy and Prediction, Corrosion Sci., 2019, 155, p 1–12.

    Article  CAS  Google Scholar 

  28. G. Svenningsen, J. ErikLein and A. Bjørgum, Effect of Low Copper Content and Heat Treatment on Intergranular Corrosion of Model AlMgSi Alloys, Corrosion Sci., 2006, 48, p 226–242.

    Article  CAS  Google Scholar 

  29. X.H. Xu, Y.L. Deng and S.Q. Chi, Effect of Interrupted Ageing Treatment on the Mechanical Properties and Intergranular Corrosion Behavior of Al-Mg-Si Alloys, J. Mater. Res. Technol., 2020, 9, p 230–241.

    Article  CAS  Google Scholar 

  30. J. Zhang, C. Wang and Y. Zhang, Effects of Creep Aging upon Al-Cu-Li Alloy: Strength, Toughness and Microstructure, J. Alloy. Compd., 2018, 764, p 452–459.

    Article  CAS  Google Scholar 

  31. B. Jiang, H.S. Wang and Y. Tian, Effects of Aging Time on Corrosion Behavior of an Al-Cu-Li Alloy, Corro Sci., 2020, 173, p 108759.

    Article  CAS  Google Scholar 

  32. S.L. Hou, D. Zhang and Y.L. Pan, Dependence of Microstructure, Mechanical Properties, and Intergranular Corrosion Behavior of Al-5.1Mg-3.0Zn-0.15Cu Alloys with High Temperature Pre-treatment, Mater. Charact., 2020, 168, p 110512.

    Article  CAS  Google Scholar 

  33. G. Svenningsen, M.H. Larsen, J.H. Nordlien and K. Nisancioglu, Effect of Thermomechanical History on Intergranular Corrosion of Extruded AlMgSi(Cu) Model Alloy, Corros. Sci., 2006, 48, p 3969–3987.

    Article  CAS  Google Scholar 

  34. J.C. Huang and A.J. Ardell, Precipitation Strengthening of Binary Al–Li Alloys by δ’ Precipitates, Mater. Sci. Eng. A., 1988, 104, p 149–156.

    Article  Google Scholar 

  35. X.H. Wang, J.H. Wang, Xin Yue and Y. Gao, Effect of Aging Treatment on the Exfoliation Corrosion and Stress Corrosion Cracking Behaviors of 2195 Al-Cu-Li Alloy, Mater. Des., 2015, 67, p 596–605.

    Article  CAS  Google Scholar 

  36. G. Svenningsen, M.H. Larsen and J.C. Walmsley, Effect of Artificial Aging on Intergranular Corrosion of Extruded AlMgSi Alloy with Small Cu Content, Corrosion Sci., 2006, 48, p 1528–1543.

    Article  CAS  Google Scholar 

  37. J.F. Li, C.X. Li and Z.W. Peng, Corrosion Mechanism Associated with T1 and T2 Precipitates of Al-Cu-Li Alloys in NaCl Solution, J. Alloy. Compd., 2008, 460, p 688–693.

    Article  CAS  Google Scholar 

  38. M. Guérin, J. Alexis and E. Andrieu, Identification of the Metallurgical Parameters Explaining the Corrosion Susceptibility in a 2050 Aluminium Alloy, Corrosion Sci., 2016, 102, p 291–300.

    Article  Google Scholar 

  39. Y. Zou, L.F. Cao and X.D. Wu, Effect of Ageing Temperature on Microstructure, Mechanical Property and Corrosion Behavior of Aluminum Alloy 7085, J. Alloy. Compd., 2020, 823, p 153792.

    Article  CAS  Google Scholar 

  40. L.M. Yao and R.K. Wang, Influences of Nano-structured Thermal Stability on the Intergranular Corrosion of High-Carbon Austenitic Heat-Resistant Steel, J. Mater. Eng. Perform., 2021, 1, p 783–793.

    Article  Google Scholar 

  41. Y.L. Ma, X.R. Zhou and X.M. Meng, Influence of Thermomechanical Treatments on Localized Corrosion Susceptibility and Propagation Mechanism of AA2099 Al-Cu-Li Alloy, Trans. Nonferrous Met. Soc. China., 2016, 26, p 1472–1481.

    Article  CAS  Google Scholar 

  42. Z.X. Wang, P. Chen and H. Li, The Intergranular Corrosion Susceptibility of 2024 Al Alloy during Re–ageing after Solution Treating and Cold–rolling, Corrosion Sci., 2017, 114, p 156–168.

    Article  CAS  Google Scholar 

  43. J.L. Huang, J.F. Li, D.Y. Liu, R.F. Zhang, Y.L. Chen, X.H. Zhang, P.C. Ma, R.K. Gupta, and N. Birbilis, Correlation of Intergranular Corrosion Behaviour with Microstructure in Al-Cu-Li Alloy, Corrosion Sci., 2018, 139, p 215–226.

    Article  CAS  Google Scholar 

Download references

Acknowledgment

This work was supported by the National Foundation of China (No.414010003), the Changsha Municipal Natural Science Foundation (kq2007085) and the Project of Changsha Science and Technology (k1705013). The authors would prefer to thank Mrs. Yingchun Wan for the help of sample preparation and paper writing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yibo Li.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xia, L., Li, Y., Huang, M. et al. Influence of Aging Treatment on the Corrosion Susceptibility and Mechanical Properties of Peak-Aged 2195 Al-Cu-Li Alloy. J. of Materi Eng and Perform 31, 631–642 (2022). https://doi.org/10.1007/s11665-021-06158-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-021-06158-5

Keywords

Navigation