Skip to main content

Advertisement

Log in

Electromagnetic Shielding Effectiveness of an Absorber-Like Carbonyl Iron-FeNi Double-Layer Composite

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

A genetic algorithm was employed as a novel method to determine the best combination of materials for a double-layer electromagnetic shielding composite with good electromagnetic wave absorption efficiency at high frequencies from numerous magnetic materials. A carbonyl iron soft magnetic composite and a flaky FeNi soft magnetic composite were used to form the double-layer composite. The reflection and transmission parameters of the double-layer composite were measured using a vector network analyzer. The electromagnetic shielding effectiveness (SE) of the double-layer composite was calculated and analyzed. The double-layer composite was composed of two shielding materials with different electromagnetic parameters and demonstrated an excellent electromagnetic SE greater than 20 dB above 4 GHz; the ratio of the absorption efficiency (SEA) to SE (SEA/SE) was greater than 0.95, which indicates that more than 95% of the electromagnetic waves at high frequencies were attenuated by the shielding material, rather than being scattered into the surrounding environment. The double-layer composite exhibits excellent performance toward high electromagnetic waves absorption during the EMI shielding process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. G.M. Weng, J.Y. Li, M. Alhabeb et al., Layerby-Layer Assembly of Cross-Functional Semi-Transparent MXene-Carbon Nanotubes Composite Films for Next-Generation Electromagnetic Interference Shielding [J], Adv. Funct. Mater., 2018, 28(44), p 1803360.

    Article  Google Scholar 

  2. H. Abbasi, M. Antunes, J.I. Velasco et al., Recent Advances in Carbon-Based Polymer Nanocomposites for Electromagnetic Interference Shielding [J], Prog. Mater. Sci., 2019, 103, p 319–373.

    Article  CAS  Google Scholar 

  3. Y. Li, N. Sun, J. Liu et al., Multifunctional BiFeO3 Composites: Absorption Attenuation Dominated Effective Electromagnetic Interference Shielding and Electromagnetic Absorption Induced by Multiple Dielectric and Magnetic Relaxations [J], Compos. Sci. Technol., 2018, 159, p 240–250.

    Article  CAS  Google Scholar 

  4. A.A. Khurram, S.A. Rakha, P. Zhou et al., Correlation of Electrical Conductivity, Dielectric Properties, Microwave Absorption, and Matrix Properties of Composites Filled with Graphene Nanoplatelets and Carbon Nanotubes [J], Appl. Phys., 2015, 118(4), p 44105.

    Article  Google Scholar 

  5. M. Cao, X. Wang, W. Cao et al., Ultrathin Graphene: Electrical Properties and Highly Efficient Electromagnetic Interference Shielding [J], J. Mater. Chem. C, 2015, 3(26), p 6589–6599.

    Article  CAS  Google Scholar 

  6. S.K. Hong, K.Y. Kim, T.Y. Kim et al., Electromagnetic Interference Shielding Effectiveness of Monolayer Graphene [J], Nanotechnology, 2012, 23(45), p 455704.

    Article  Google Scholar 

  7. M. Mishra, A.P. Singh, B.P. Singh et al., Conducting Ferrofluid: A High-Performance Microwave Shielding Material [J], J. Mater. Chem. A, 2014, 2(32), p 13159–13168.

    Article  CAS  Google Scholar 

  8. H. Fu, Z. Yang, Y. Zhang et al., SWCNT-Modulated Folding-Resistant Sandwich-Structured Graphene Film for High-Performance Electromagnetic Interference Shielding [J], Carbon, 2020, 162, p 490–496.

    Article  CAS  Google Scholar 

  9. F. Shahzad, M. Alhabeb, C.B. Hatter et al., Electromagnetic Interference Shielding with 2D Transition Metal Carbides (MXenes) [J], Science, 2016, 353, p 1137–1140.

    Article  CAS  Google Scholar 

  10. L. Liu, X. Chen, H. Wang et al., Microstructure and Electromagnetic Shielding Properties of Mg-Zn-Ce-Y-Zr Alloys [J], J. Mater. Eng. Perform., 2018, 27(9), p 4722–4731.

    Article  CAS  Google Scholar 

  11. M. Shtein, R. Nadiv, M. Buzaglo et al., Thermally Conductive Graphene-Polymer Composites: Size, Percolation, and Synergy Effects [J], Chem. Mater., 2015, 27, p 2100–2106.

    Article  CAS  Google Scholar 

  12. H. Deng, L. Lin, M. Ji et al., Progress on the Morphological Control of Conductive Network in Conductive Polymer Composites and the Use as Electroactive Multifunctional Materials [J], Prog. Polym. Sci., 2014, 39, p 627–655.

    Article  CAS  Google Scholar 

  13. Z. Wang, B.Y. Mao, Q.L. Wang et al., Ultrahigh Conductive Copper/Large Flake Size Graphene Heterostructure Thin-Film With Remarkable Electromagnetic Interference Shielding Effectiveness [J], Small, 2018, 14, p 1704332.

    Article  Google Scholar 

  14. B. Wen, M. Cao, M. Lu et al., Reduced Graphene Oxides: Light-Weight and High-Efficiency Electromagnetic Interference Shielding at Elevated Temperatures [J], Adv. Mater., 2014, 26(21), p 3484–3489.

    Article  CAS  Google Scholar 

  15. P. He, M.S. Cao, J.C. Shu et al., Atomic Layer Tailoring Titanium Carbide MXene to Tune Transport and Polarization for Utilization of Electromagnetic Energy Beyond Solar and Chemical Energy [J], ACS Appl. Mater. Interf., 2019, 11(13), p 12535–12543.

    Article  CAS  Google Scholar 

  16. B. Quan, W. Gu, J. Sheng et al., From Intrinsic Dielectric Loss to Geometry Patterns: Dual-Principles Strategy for Ultrabroad Band Microwave Absorption [J], Nano Res., 2021, 14(5), p 1495–1501.

    Article  CAS  Google Scholar 

  17. Y. Cheng, J.Z.Y. Seow, H. Zhao et al., A Flexible and Lightweight Biomass-Reinforced Microwave Absorber [J], Nano-Micro Lett., 2020, 12(1), p 1–15.

    Article  CAS  Google Scholar 

  18. P. Song, B. Liu, C. Liang et al., Lightweight, Flexible Cellulose-Derived Carbon Aerogel@ Reduced Graphene Oxide/PDMS Composites with Outstanding EMI Shielding Performances and Excellent Thermal Conductivities [J], Nano-Micro Lett., 2021, 13(1), p 1–17.

    Article  CAS  Google Scholar 

  19. Q. Zhang, Q. Liang, Z. Zhang et al., Electromagnetic Shielding Hybrid Nanogenerator for Health Monitoring and Protection [J], Adv. Funct. Mater., 2018, 28, p 1703801.

    Article  Google Scholar 

  20. S. Acharya and S. Datar, Wide Band Microwave Absorption Dominated Electromagnetic Interference Shielding Composite Using Copper Aluminum Ferrite and Reduced Graphene Oxide in Polymer Matrix [J], Appl. Phys., 2020, 128, p 104902.

    Article  CAS  Google Scholar 

  21. P. He, X. Wang, Y. Cai et al., Tailoring Ti3C2Tx Nanosheets to Tune Local Conductive Network as an Environmentally Friendly Material for Highly Efficient Electromagnetic Interference Shielding [J], Nanoscale, 2019, 11(13), p 6080–6088.

    Article  CAS  Google Scholar 

  22. M.S. Cao, W.L. Song, Z.L. Hou et al., The Effects of Temperature and Frequency on the Dielectric Properties, Electromagnetic Interference Shielding and Microwave-Absorption of Short Carbon Fiber/Silica Composites [J], Carbon, 2010, 48(3), p 788–796.

    Article  CAS  Google Scholar 

  23. S.Y. Hong, Y.C. Kim, M. Wang et al., Anisotropic Electromagnetic Interference Shielding Properties of Polymer-Based Composites with Magnetically-Responsive Aligned Fe3O4 Decorated Reduced Graphene Oxide [J], Eur. Polym. J., 2020, 127, p 109595.

    Article  CAS  Google Scholar 

  24. Y.C. Qing, Q.L. Wen, F. Luo et al., Graphene Nanosheets/BaTiO3 Ceramics as Highly Efficient Electromagnetic Interference Shielding Materials in the X-Band [J], Mater. Chem. C, 2016, 4, p 371–375.

    Article  CAS  Google Scholar 

  25. C. Liang, Y. Liu, Y. Ruan et al., Multifunctional Sponges with Flexible Motion Sensing and Outstanding Thermal Insulation for Superior Electromagnetic Interference Shielding [J], Compos. Part A, 2020, 139, p 106143.

    Article  Google Scholar 

  26. H. Guan and D.D.L. Chung, Effect of the Planar Coil and Linear Arrangements of Continuous Carbon Fiber Tow on the Electromagnetic Interference Shielding Effectiveness, with Comparison of Carbon Fibers with and Without Nickel Coating [J], Carbon, 2019, 152, p 898–908.

    Article  CAS  Google Scholar 

  27. O. Balci, E.O. Polat, N. Kakenov et al., Graphene-Enabled Electrically Switchable Radar-Absorbing Surfaces [J], Nat. Commun., 2015, 6(1), p 1–10.

    Google Scholar 

  28. X.X. Wang, J.C. Shu, W.Q. Cao et al., Eco-Mimetic Nanoarchitecture for Green EMI Shielding [J], Chem. Eng. J., 2019, 369, p 1068–1077.

    Article  CAS  Google Scholar 

  29. T. Wang, R. Han, G. Tan et al., Reflection Loss Mechanism of Single Layer Absorber for Flake-Shaped Carbonyl-Iron Particle Composite [J], J. Appl. Phys., 2012, 112(10), p 104903.

    Article  Google Scholar 

  30. B. Duan, J. Zhang, P. Wang et al., Design and Preparation of an Ultrathin Broadband Metamaterial Absorber with a Magnetic Substrate Based on Genetic Algorithm [J], J. Magn. Magn. Mater., 2020, 501, p 166439.

    Article  CAS  Google Scholar 

  31. J.M. Zhang, G.W. Wang, T. Wang et al., Genetic Algorithms to Automate the Design of Metasurfaces for Absorption Bandwidth Broadening [J], ACS Appl. Mater. Interf., 2021, 13(6), p 7792–7800.

    Article  CAS  Google Scholar 

  32. H. Nan, Y. Qing, H. Gao et al., Synchronously Oriented Fe Microfiber & Flake Carbonyl Iron/Epoxy Composites with Improved Microwave Absorption and Lightweight Feature [J], Compos. Sci. Technol., 2019, 184, p 107882.

    Article  CAS  Google Scholar 

  33. G. Wang, J. Zhang, D. Wang et al., Electromagnetic Interference Shielding and Microwave Absorption Performance of Magnetic Co@C/Na2SiO3 Composite at 673 K [J], Ceram. Int., 2019, 45(17), p 23172–23179.

    Article  CAS  Google Scholar 

  34. W. Yang, L. Qiao, J. Wei et al., Microwave Permeability of Flake-Shaped FeCuNbSiB Particle Composite with Rotational Orientation [J], J. Appl. Phys., 2015, 51(11), p 1–4.

    Google Scholar 

  35. F. Wang, C. Long, T. Wu et al., Enhancement of Low-Frequency Magnetic Permeability and Absorption by Texturing Flaky Carbonyl Iron Particles [J], J. Alloys Compd., 2020, 823, p 153827.

    Article  CAS  Google Scholar 

  36. H. Xiang, Y. Guo, Z. Zhang et al., Fabrication of MnO2@Fe Rod-Like Composite with Controllable Weight Ratios of Fe/MnO(2)and Excellent Wideband Electromagnetic Absorption Performance [J], J. Alloys Compd., 2019, 773, p 150–157.

    Article  CAS  Google Scholar 

  37. Q. Li, S. Yan, X. Wang et al., Enhanced Microwave Absorption of Flake Oriented Sendust Sheets by Tape Casting [J], IEEE Trans. Magn., 2015, 51(11), p 1–4.

    Google Scholar 

  38. S. Iqbal, H. Khatoon, R.K. Kotnala et al., Bi-Doped Barium Ferrite Decorated Polythiophene Nanocomposite: Influence of Bi-Doping on Structure, Morphology, Thermal and EMI Shielding Behavior for X-Band [J], J. Mater. Sci., 2020, 55(33), p 15894–15907.

    Article  CAS  Google Scholar 

  39. Y. Qing, Y. Mu, Y. Zhou et al., Multiwalled Carbon Nanotubes–BaTiO3/Silica Composites with High Complex Permittivity and Improved Electromagnetic Interference Shielding at Elevated Temperature [J], J. Eur. Ceram. Soc., 2014, 34(10), p 2229–2237.

    Article  CAS  Google Scholar 

  40. D.X. Yan, H. Pang, B. Li et al., Structured Reduced Graphene Oxide/Polymer Composites for Ultra-Efficient Electromagnetic Interference Shielding [J], Adv. Funct. Mater., 2015, 25(4), p 559–566.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (No.11574122) and Joint Fund of Equipment Pre-Research and Ministry of Education (No.6141A02033242).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tao Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher′s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dou, Z., Zhang, J., Wang, G. et al. Electromagnetic Shielding Effectiveness of an Absorber-Like Carbonyl Iron-FeNi Double-Layer Composite. J. of Materi Eng and Perform 31, 643–650 (2022). https://doi.org/10.1007/s11665-021-06156-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-021-06156-7

Keywords

Navigation