Skip to main content

Advertisement

Log in

The Effect of Vacuum on the Mechanical Properties of Sand Cast AA6061 Alloy

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

The application of vacuum in casting technology is very limited. In the present scenario, the vacuum is mainly used in die casting or investment casting, but the application of vacuum in sand casting is not known yet. In the present investigation, the author did a sand casting process under a vacuum, where the melting and pouring of metals were carried out in a vacuum atmosphere. AA6061 castings were made by sand casting under vacuum (SCUV) process in two different absolute pressure of 110 mbar and 56 mbar, and conventional sand casting process at atmospheric pressure. The effect of vacuum on the porosity and mechanical properties of the castings were investigated and compared with the conventional sand casting process. The results revealed that SCUV process reduces the porosity and improves the mechanical properties of sand cast AA6061 alloy. The pore size and the amount of porosity were significantly reduced from 1.548% at atmospheric pressure to 0.302% at 56 mbar of absolute pressure, i.e., 80.49% of reduction. The result also revealed that the mechanical properties of sand casting under vacuum were significantly improved, especially with the ultimate tensile strength from 276.2 to 309.8 MPa, i.e., 12.17% improvement, and elongation increased from 9.8 to 13.15%, i.e., 34.18% improvement. The gases present inside the mold cavity become the final gas porosity in SCUV. In addition, scanning electron microscopy analysis shows solidification shrinkages present in sand cast. SCUV reduces the size of porosity defect that can improve the stress distribution and slow down the crack propagation in sand castings. Therefore, the SCUV enhanced the ultimate tensile strength and elongation of sand casting.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. G. Chen et al., Ultrasonic Assisted Squeeze Casting of a Wrought Aluminum Alloy, J. Mater. Process. Technol., 2019, 266, p 19-25. https://doi.org/10.1016/j.jmatprotec.2018.10.032

    Article  CAS  Google Scholar 

  2. X. Dong, H. Yang, X. Zhu and S. Ji, High Strength and Ductility Aluminium Alloy Processed by High Pressure Die Casting, J. Alloys Compd., 2019, 773, p 86-96. https://doi.org/10.1016/j.jallcom.2018.09.26

    Article  CAS  Google Scholar 

  3. J. Rams, Wrought Aluminum Alloys, in Reference Module in Materials Science and Materials Engineering, 2021. https://doi.org/10.1016/B978-0-12-819726-4.00083-1

  4. C. Q. Zheng, A. Simard, Optimization of Casting Parameters on an Improved AA6061 Aluminum Alloy for Semi-Solid Die Casting, SAE Tech. Pap., 2010.

  5. S.Y. Sung and Y.J. Kim, Melting and Casting of Titanium Alloys, Mater. Sci. Forum, 2007, 539–543, p 3601–3606.

    Article  Google Scholar 

  6. H. Toda, T. Kobayashi and A. Takahashi, Mechanical Analysis of Toughness Degradation due to Premature Fracture of Course Inclusions in Wrought Aluminium Alloys, Mater. Sci. Eng. A, 2000, 280(1), p 69–75. https://doi.org/10.1016/S0921-5093(99)00658-9

    Article  Google Scholar 

  7. JoaquínRams. Ramos and BelénTorres. Barreiro, Casting Aluminum Alloys, Ref. Modul. Mater. Sci. Mater. Eng., 2021 https://doi.org/10.1016/B978-0-12-819726-4.00087-9

    Article  Google Scholar 

  8. J.K. Yoder, R.J. Griffiths and H.Z. Yu, Deformation-Based Additive Manufacturing of 7075 Aluminum with Wrought-Like Mechanical Properties, Mater. Des., 2021, 198, p 2020–2022. https://doi.org/10.1016/j.matdes.2020.109288

    Article  CAS  Google Scholar 

  9. J. Jiang, Y. Liu, G. Xiao, Y. Wang and X. Xiao, Effects of Plastic Deformation of Solid Phase on Mechanical Properties and Microstructure of Wrought 5A06 Aluminum Alloy in Directly Semisolid Thixoforging, J. Alloys Compd., 2020, 831, 154748. https://doi.org/10.1016/j.jallcom.2020.154748

    Article  CAS  Google Scholar 

  10. J. Singh, R. Singh and H. Singh, Dimensional Accuracy and Surface Finish of Biomedical Implant Fabricated as Rapid Investment Casting for Small to Medium Quantity Production, J. Manuf. Process., 2017, 25, p 201–211. https://doi.org/10.1016/j.jmapro.2016.11.012

    Article  Google Scholar 

  11. M. S. Ayar, V. S. Ayar and P. M. George, Simulation and Experimental Validation for Defect Reduction in Geometry Varied Aluminium Plates Casted Using Sand Casting, Materials Today: Proceedings, DOI: https://doi.org/10.1016/j.matpr.2020.02.788

  12. M. Masoumi, H. Hu, J. Hedjazi and M.A. Boutorabi, Effect of Gating Design on Mold Filling, AFS Trans., 2005, 113(02), p 1–12.

    Google Scholar 

  13. E. Lordan, J. Lazaro-Nebreda, Y. Zhang, K. Dou, P. Blake and Z. Fan, On the Relationship Between Internal Porosity and the Tensile Ductility of Aluminium Alloy Die-Castings, Mater. Sci. Eng. A, 2020, 778(2), 139107. https://doi.org/10.1016/j.msea.2020.139107

    Article  CAS  Google Scholar 

  14. B. Wang, S. Xue, C. Ma, J. Wang, Z. Lin, Effects of Porosity, Heat Input and Post-Weld Heat Treatment on the Microstructure and Mechanical Properties of TIG Welded Joints of aa6082-t6, Metals (Basel)., 7, 463 (2017). DOI: https://doi.org/10.3390/met7110463

  15. P. Szalva and I.N. Orbulov, The Effect of Vacuum on the Mechanical Properties of Die Cast Aluminium AlSi9Cu3(Fe) Alloy, Inter Metalcast, 2019, 13, p 853–864. https://doi.org/10.1007/s40962-018-00302-z

    Article  CAS  Google Scholar 

  16. P. Szalva and I.N. Orbulov, Influence of Vacuum Support on The Fatigue Life of AlSi9Cu3(fe) Aluminum Alloy Die Castings, J. Mater. Eng. Perform., 2020, 29(9), p 5685–5695. https://doi.org/10.1007/s11665-020-05050-y

    Article  CAS  Google Scholar 

  17. P. Szalva and I.N. Orbulov, Fatigue Testing and Non-Destructive Characterization of AlSi9Cu3(Fe) Die Cast Specimens by Computer Tomography, Fatigue Fract. Eng. Mater. Struct., 2020, 43(9), p 1949–1958. https://doi.org/10.1111/ffe.13249

    Article  CAS  Google Scholar 

  18. R.K. Tayal, S. Kumar, A. Mondal and S. Jambhale, Experimental Investigation and Parametric Optimization of AA6063/AA6351 Alloys Bimetallic Prepared by vacuum assisted Lost Foam Compound Casting Process, Int. J. Met., 2020, 14(1), p 243–256. https://doi.org/10.1007/s40962-019-00349-6

    Article  CAS  Google Scholar 

  19. B. Yalcin, M. Koru, A.E. Ozgur and O. Ipek, Effect of Injection Parameters and Vacuum on the Strength and Porosity Amount of Die-Casted A380 Alloy, Int. J. Met., 2017, 11(2), p 195–206. https://doi.org/10.1007/s40962-016-0046-2

    Article  Google Scholar 

  20. A. P. Valerga Puerta, D. M. Sanchez, M. Batista, and J. Salguero, Criteria Selection for a Comparative Study of Functional Performance of Fused Deposition Modelling and Vacuum Casting processes, J. Manuf. Process., 35(8), 721–727 (2018). DOI: https://doi.org/10.1016/j.jmapro.2018.08.033

  21. L. Yu et al., Characterizations on the Microstructure and Micro-Mechanics of Cast Be-Al-0.4Sc-0.4Zr Alloy Prepared by Vacuum Induction Melting, Mater. Sci. Eng. A, 2018. DOI:https://doi.org/10.1016/j.msea.2018.12.027

  22. K. Kamyshnykova and J. Lapin, Vacuum Induction Melting and Solidification of TiAl-Based Alloy in Graphite Crucibles, Vacuum, 2018, 154(5), p 218–226. https://doi.org/10.1016/j.vacuum.2018.05.017

    Article  CAS  Google Scholar 

  23. G. Dixon Chandley, Use of Vacuum For Counter Gravity Casting of Metals, Mater. Technol., 14 (3), 121–126, (1999). DOI: https://doi.org/10.1007/s100190050120.

  24. X. Dong, X. Zhu and S. Ji, Effect of Super Vacuum Assisted High Pressure Die Casting on the Repeatability of Mechanical Properties of Al-Si-Mg-Mn Die-Cast Alloys, J. Mater. Process. Technol., 2019, 266(10), p 105–113. https://doi.org/10.1016/j.jmatprotec.2018.10.030

    Article  CAS  Google Scholar 

  25. M. Denoual, P. Mognol, B. Lepioufle, Vacuum Casting, a New Answer for Manufacturing Biomicrosystems, Proc. Inst. Mech. Eng. Part B J. Eng. Manuf., 219(9), 697–701 (2005). DOI: https://doi.org/10.1243/095440505X32571

  26. J. Zeng, P. Gu, Y. Wang, Investigation of Inner Vacuum Sucking Method for Degassing of Molten Aluminum, Mater. Sci. Eng. B Solid-State Mater. Adv. Technol., 177(19), 1717–1720 (2012). DOI: https://doi.org/10.1016/j.mseb.2012.02.005

  27. S. A. Radu, D. F. Fratila, Simulation and Experimental Research on the Vacuum Casting of Non-Metallic Complex Parts Using Flexible Molds, Proc. Rom. Acad. Ser. A - Math. Phys. Tech. Sci. Inf. Sci., 13 (4), 343–350, (2012).

  28. M. Paidar et al., Dissimilar Modified Friction Stir Clinching of AA2024-AA6061 Aluminium Alloys: Effects of Materials Positioning, J Mater Res Technol., 2020 https://doi.org/10.1016/j.jmrt.2020.04.007

    Article  Google Scholar 

  29. G. Hussain, M. Ilyas, B. B. Lemopi Isidore, W. A. Khan, Mechanical Properties and Microstructure Evolution in Incremental Forming of AA5754 and AA6061 Aluminium Alloys, Trans. Nonferrous Met. Soc. China , 30(1), 51–64 (2020). DOI: https://doi.org/10.1016/S1003-6326(19)65179-4

  30. H.K. Sachidananda and D. Prasanth, Design and Analysis of Pressure Vessel, Int. J. Mech. Prod. Eng. Res. Dev., 2019, 9(5), p 125–136. https://doi.org/10.24247/ijmperdoct201912

    Article  Google Scholar 

  31. S. ASME, 2017 Boiler and Pressure Vessel Code, An International Code BPVC17, ASME Boil. Press. Vessel Code, 25, (2017).

  32. H. Singh, S. Daronde, Finite Element Analysis of Induction Heating Process Design for SMART Foundry 2020, Comsol Conference 2019 Boston, 1–5, (2019).

  33. D. Singh, R. Singh and K.S. Boparai, Development and Surface Improvement of FDM Pattern Based Investment Casting of Biomedical Implants: A State of Art Review, J. Manuf. Process., 2018, 31, p 80–95. https://doi.org/10.1016/j.jmapro.2017.10.026

    Article  Google Scholar 

  34. S. Ahmad et al., Simulation of Hip Implant with respect to the Clearance between the Bone and Endoprosthesis: A Case Study, Procedia CIRP, 2020, 89, p 68–73. https://doi.org/10.1016/j.procir.2020.05.120

    Article  Google Scholar 

  35. D.S. Bhiogade, S.M. Randiwe, A.M. Kuthe and A.A. Likhite, Study of Hot Tearing in Stainless Steel CF3M During Casting Using Simulation and Experimental Method, Inter Metalcast, 2018, 12, p 331–342. https://doi.org/10.1007/s40962-017-0170-7

    Article  Google Scholar 

  36. K. C. Ananthapadmanabham, Effect of Additives on Silica Sand Mold for Aluminium Castings, Proc. of Int. Conf. on Current Trends in Eng., Science and Technology (2017).

  37. J. Zheng et al., Effectiveness Analysis of Resources Consumption, Environmental Impact and Production Efficiency in Traditional Manufacturing Using New Technologies: Case from sand casting, Energy Convers. Manag., 209,(3), 112671, (2020). https://doi.org/10.1016/j.enconman.2020.112671

  38. C.H. Cáceres, I.L. Svensson and J.A. Taylor, Strength-Ductility Behaviour of Al-Si-Cu-Mg Casting Alloys in T6 Temper, Int. J. Cast Met. Res., 2003, 15(5), p 531–543. https://doi.org/10.1080/13640461.2003.11819539

    Article  Google Scholar 

  39. BN-75/4051-10: Porosity of Casting by Hydrostatic Weighing (1975).

  40. U.N.A. Pratten, Review the Precise Measurement of the Density of Small Samples, J. Mater. Sci., 1981, 16(7), p 1737–1747. https://doi.org/10.1007/BF00540619

    Article  Google Scholar 

  41. S. Zhang, K. Sun, F. Han and F. Zhao, A New Dropper-Type Gas Flow Measuring Method Based on Weighing Principle, Vacuum, 2017, 145, p 203–208. https://doi.org/10.1016/j.vacuum.2017.08.035

    Article  CAS  Google Scholar 

  42. R. Hayu, H. Sutanto and Z. Ismail, Accurate Density Measurement of Stainless Steel Weights by Hydrostatic Weighing System, Meas. J. Int. Meas. Confed., 2019, 131, p 120–124. https://doi.org/10.1016/j.measurement.2018.08.033

    Article  Google Scholar 

  43. F.E. Jones and G.L. Harris, ITS-90 Density of Water Formulation for Volumetric Standards Calibration, J. Res. Natl. Inst. Stand. Technol., 1992, 97(3), p 335. https://doi.org/10.6028/jres.097.013

    Article  CAS  Google Scholar 

  44. The Aluminum Association Inc, Automotive aluminum the performance advantage, (2004), http:// www.autoaluminum.org

  45. M. Wicke, A. Brueckner-Foit, T. Kirsten, M. Zimmermann, F. Buelbuel and H.J. Christ, Near-Threshold Crack Extension Mechanisms in an Aluminium Alloy Studied by SEM and X-ray Tdomography, Int. J. Fatigue, 2019, 119(8), p 102–111. https://doi.org/10.1016/j.ijfatigue.2018.08.024

    Article  CAS  Google Scholar 

  46. M.B. Uday, M.N. Ahmad-Fauzi, A.M. Noor and S. Rajoo, An Insight into Microstructural Evolution During Plastic Deformation in AA6061 Alloy After Friction Welding with Alumina-YSZ Composite, Mech. Mater., 2015, 91(1), p 50–63. https://doi.org/10.1016/j.mechmat.2015.07.010

    Article  Google Scholar 

  47. C. Maierhofer et al., Characterization of Pores in High Pressure Die Cast Aluminium Using Active Thermography and Computed Tomography, AIP Conf. Proc., 2016, 1706, p 2.

    Google Scholar 

  48. H. Mae, X. Teng, Y. Bai, T. Wierzbicki, Comparison of Ductile Fracture Properties of Aluminium Castings: Sand Mold vs. Metal Mold, Int. J. Solids Struct., 45(5), 1430–1444 (2008).

  49. ISO 6892-1:2019 Metallic Materials Tensile testing - Part 1: Method of test at room temperature.

  50. A.H. Shevidi, R. Taghiabadi and A. Razaghian, Weibull Analysis of Effect of T6 Heat Treatment on Fracture Strength of AM60B Magnesium Alloy, Trans. Nonferrous Met. Soc. China, 2018, 28(1), p 20–29. https://doi.org/10.1016/S1003-6326(18)64634-5

    Article  CAS  Google Scholar 

  51. M. Tiryakioğlu and J. Campbell, Weibull analysis of mechanical data for castings: A guide to the interpretation of probability plots, Metall. Mater. Trans. A Phys. Metall. Mater. Sci., 41(12), 3121–3129 (2010). DOI: https://doi.org/10.1007/s11661-010-0364-6

  52. A. Siot et al., Correlation Between Process and Silica Dispersion/Distribution into Composite: Impact on Mechanical Properties and Weibull Statistical Analysis, Polym. Test., 2018, 70, p 92–101. https://doi.org/10.1016/j.polymertesting.2018.06.007

    Article  CAS  Google Scholar 

  53. C. Hanxue, H. Mengyao, S. Chao and L. Peng, The Influence of Different Vacuum Degree on the Porosity and Mechanical Properties of Aluminum Die Casting, Vacuum, 2017, 146, p 278–281.

    Article  Google Scholar 

  54. X.G. Hu, Q. Zhu, S.P. Midson, H.V. Atkinson, H.B. Dong, Z. Zhang and Y.L. Kang, Blistering in semi-solid die casting of aluminum alloys and its avoidance, Acta Mater., 2017, 124, p 446–455.

    Article  CAS  Google Scholar 

  55. A. Rotella, Y. Nadot, M. Piellard, R. Augustin and M. Fleuriot, Fatigue Limit of a Cast Al-Si-Mg Alloy (A357–T6) with Natural Casting Shrinkages Using ASTM Standard X-ray Inspection, Int. J. Fatigue, 2018, 114, p 177–188. https://doi.org/10.1016/j.ijfatigue.2018.05.026

    Article  CAS  Google Scholar 

  56. ASTM E155-20. Standard Reference Radiographs for Inspection of Aluminium and Magnesium Castings.

  57. A. Wilczek, P. Długosz and M. Hebda, Porosity Characterization of Aluminium Castings by Using Particular Non-destructive Techniques, J. Nondestruct. Eval., 2015, 34(3), p 1–7. https://doi.org/10.1007/s10921-015-0302z

    Article  Google Scholar 

  58. J. Ouyang, E. Yarrapareddy and R. Kovacevic, Microstructural Evolution in the Friction Stir Welded 6061 Aluminium Alloy (T6-temper condition) to Copper, J. Mater. Process. Technol., 2006, 172(1), p 110–122. https://doi.org/10.1016/j.jmatprotec.2005.09.013

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Subodh Daronde.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Daronde, S., Kuthe, A., Keerti, S. et al. The Effect of Vacuum on the Mechanical Properties of Sand Cast AA6061 Alloy. J. of Materi Eng and Perform 31, 262–271 (2022). https://doi.org/10.1007/s11665-021-06154-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-021-06154-9

Keywords

Navigation