Skip to main content
Log in

Electroplating of Zn-Ni Alloy Coating on Mild Steel and Its Electrochemical Studies

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

A new sulfate bath having ZnSO4.6H2O, NiSO4.6H2O, citric acid, and methanol extract in combination was optimized for the deposition of Zn-Ni electroplating on mild steel. The bath composition and operating conditions were optimized by the Hull cell experiment. The effect of current density (CD), pH, and temperature on coating properties like Ni content, hardness, thickness, throwing power, and corrosion resistance was discussed. The corrosion performance has been investigated by potentiodynamic polarization and electrochemical impedance spectroscopy methods. The antibacterial activity of the extract was carried out by the agar diffusion method. The electroplating having about 1.51% of nickel content (at optimized current density 4 A dm-2) was found to be bright and uniform, showing good corrosion performance against corrosion, and shows the highest corrosion resistance (8.62 μA cm-2) at optimized current density 4 A dm-2. The microstructures of the deposits were examined with scanning electron microscopy (SEM). The nickel contents in the deposit were analyzed with colorimetric technique and cross-checked by energy-dispersive x-ray analysis (EDX). A novel sulfate bath for Zn–Ni alloy coating on mild steel has been proposed and results are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. A.D.A. Adedapo, Y.O. Osude, A.A. Adedapo, J.O. Moody, A.S. Adeagbo, O.A. Olajide and J.M. Makinde, Blood Pressure Lowering Effect of Adenanthera pavonina Seed Extract on Normotensive Rats, Records Nat Prod., 2009, 3, p 82–89.

    CAS  Google Scholar 

  2. P.K.I.D.E. Jayasinghe, B.M.R. Bandara, E.W.M.A. Ekanayaka, V. Thevanesam, Screening for Antimicrobial Activity of Acronychia Pedlinculata (Ankenda) and Adenanthera Pavonina (Madatiya) Against Bacteria Causing Skin and Wound Infections in Humans, Proceedings of Peradeniya, Univ. Res. Sessions-Sri Lanka 2006, 11, p 105–105.

  3. R.C. Jagessar, A. Mohamed and G. Gomes, Antibacterial and Antifungal Activity of Leaf Extracts of Luffa operculata, vs. Peltophorum Pterocarpum, against Candida albicans, Staphylococcus aureus and Escherichia colim, Nat. Sci., 2007, 5(4), p 81–93.

    Google Scholar 

  4. D. Veeramuthu, A. Muniappan and I. Savarimuthu, Antimicrobial Activity of Some Ethnomedicinal Plants used by Paliyar Tribe from Tamil Nadu, India, BMC Comple. Alt. Med., 2006, 6, p 35. https://doi.org/10.1186/1472-6882-6-35

    Article  Google Scholar 

  5. N. Kanani, Electroplating: Basic Principles Processes and Practice, Elsevier Ltd, Berlin, 2006.

    Google Scholar 

  6. J.B. Bajat, S. Stankovic and B.M. Jokic, Electrochemical Deposition and Corrosion Stability of Zn–Co Alloys, J. Solid State Electrochem., 2009, 13, p 755–762.

    Article  CAS  Google Scholar 

  7. R.S. Bhat, K.B. Manjunatha, R.P. Shankara, K. Venkatakrishna and A.C. Hegde, Electrochemical Studies on the Corrosion Resistance of Zn-Ni-Co Coating from Acid Chloride Bath, Appl. Phys. A, 2020, 126(10), p 1–9.

    Article  Google Scholar 

  8. R. Ramanauskas, R. Juskenas, L. Kalinicenko and F. Garfias-Mesias, Microstructure and Corrosion Resistance of Electrodeposited Zinc Alloy Coatings, J. Solid State Eletrochem., 2004, 8, p 416–421.

    Article  CAS  Google Scholar 

  9. I. Brooks and U. Erb, Hardness of Electrodeposited Microcrystalline and Nanocrystalline γ-Phase Zn-Ni Alloys, Scr. Mater., 2001, 44, p 853–858.

    Article  CAS  Google Scholar 

  10. R.S. Bhat and K.B. Manjunatha, Corrosion Performance of Zinc Based Binary and Ternary Alloy Coatings, Chem. Data Coll., 2020, 28, p 100440.

    CAS  Google Scholar 

  11. R. Bhat, S. Bekal and A.C. Hegde, Fabrication of Zn-Ni Alloy Coatings from Acid Chloride Bath and Its Corrosion Performance, Anal. Bioanal. Electrochem., 2018, 10(12), p 1562–1573.

    CAS  Google Scholar 

  12. C. Muller, M. Sarret and M. Benballa, Some Peculiarities in the Codeposition of Zinc–Nickel Alloys, Electrochim Acta, 2001, 46, p 2811–2817.

    Article  CAS  Google Scholar 

  13. F. Elkhatabi, G. Barcelo, M. Sarret and C. Muller, Electrochemical Oxidation of Zinc + Nickel Alloys in Ammonium Baths, J. Electroanal. Chem., 1996, 419, p 71–76.

    Article  CAS  Google Scholar 

  14. M.M. Abou-Krisha, Electrochemical Studies of Zinc–Nickel Codeposition in Sulphate Bath, J. Appl. Surf. Sci., 2005, 252, p 1035–1048.

    Article  CAS  Google Scholar 

  15. N. Eliaz, E. Gileadi, Modern Aspects of Electrochemistry,  (Springer, 2008), New York vol. 42, p 191-296

  16. M.M. Abou-Krisha, H.M. Rageh and E.A. Matter, Electrochemical Studies on the Electrodeposited Zn-Ni-Co Ternary Alloy in Different Media, Surf. Coat. Technol., 2008, 202(15), p 3739–3746.

    Article  CAS  Google Scholar 

  17. R.S. Bhat, P. Nagaraja and S. Priyadarshini, Zn-Ni Compositionally Modulated Multilayered Alloy Coatings for Improved Corrosion Resistance, Surf. Eng., 2020, 37, p 755–763.

    Article  Google Scholar 

  18. R.S. Bhat and V.B. Shet, Development and Characterization of Zn-Ni, Zn-Co and Zn-Ni-Co Coatings, Surf. Eng., 2020, 36(4), p 429–437.

    Article  CAS  Google Scholar 

  19. V. Thangaraj and A.C. Hegde, Anomalous Codeposition and Characterization of Zn-Fe Alloy, Bull. Electrochem., 2006, 22, p 393–399.

    Google Scholar 

  20. J.B. Bajat, M.D. Maksimovi and R.R. Goran, Electrochemical Deposition and Characterization of Zinc-Nickel Alloys Deposited by Direct and Pulse Current, J. Serb. Chem. Soc., 2002, 67, p 625–634.

    Article  CAS  Google Scholar 

  21. E. Gomez, X. Alcobe and E. Valles, Characterisation of Zinc-Cobalt Alloy Phases Obtained by Electrodeposition, J. Electroanal. Chem., 2001, 505, p 54–61.

    Article  CAS  Google Scholar 

  22. Y.Y. Wang, H.J. Xiao and L.Y. Chai, Current Efficiency Improvement of Zn-Fe Alloy Electrodeposition by Hydrogen Inhibitor, J. Cent. South Univ. Technol., 2008, 15, p 814–818.

    Article  CAS  Google Scholar 

  23. A.C. Hegde, K. Venkatakrishna and N. Eliaz, Electrodeposition of Zn-Ni, Zn-Fe and Zn-Ni-Fe Alloys, Surf. Coat. Technol., 2010, 205, p 2031–2041.

    Article  CAS  Google Scholar 

  24. N. Eliaz, K. Venkatakrishna and A.C. Hegde, Electroplating and Characterization of Zn-Ni, Zn-Co and Zn-Ni-Co Alloys, Surf. Coat. Technol., 2010, 205, p 1969–1978.

    Article  CAS  Google Scholar 

  25. B. Hafez, M. Mokhtari, H. Elmsellem and H. Steli, Environmentally Friendly Inhibitor of the Corrosion of Mild Steel: Commercial oil of Eucalyptus, Int. J. Corros. Scale Inhibit., 2019, 8(3), p 573–585.

    CAS  Google Scholar 

  26. C.A. Loto, A. Olofinjana and R.T. Loto, Effect of Manihot Esculenta C. Leaf Extract Additive on the Zinc Electroplating on Mild Steel in Acid Chloride Solution, Int. J. Elect. Sci., 2014, 9, p 3746–3759.

    Google Scholar 

  27. S.M. Vidya, V. Krishna, K.P. Rajesh, B.R. Bharath, H. Manjunatha and B.K. Manjunatha, Antibacterial and Molecular Docking Studies of Entagenic Acid, A Bioactive Principle from Seed Kernel of Entada pursaetha DC, Med. Chem. Res., 2012, 21(7), p 1016–1022.

    Article  CAS  Google Scholar 

  28. R. Bhat, K.U. Bhat and A.C. Hegde, Optimization of Deposition Conditions for Bright Zn-Fe Coatings and Its Characterization, Prot. Met. Phys. Chem. Surf., 2011, 47(5), p 645–653.

    Article  CAS  Google Scholar 

  29. V. Thangaraj and A.C. Hegde, Electrodeposition and Compositional Behaviour of Zn-Ni Alloy, Indian J. Chem. Technol., 2007, 14, p 246–252.

    CAS  Google Scholar 

  30. M.K. Punith Kumar, T.V. Venkatesha, M.K. Pavithra and A.N. Shetty, A Study on Corrosion Behavior of Electrodeposited Zn-Rutile TiO2 Composite Coatings, Synth. React. Inorg. Met. -Org. Nano-Met. Chem., 2012, 42(10), p 1426–1434.

    Article  CAS  Google Scholar 

  31. D. Kong, X. Ni, C. Dong, X. Lei, L. Zhang, C. Man, J. Yao, X. Cheng and X. Li, Bio-functional and Anti-corrosive 3D printing 316L Stainless Steel Fabricated by Selective Laser Melting, Mater. Des., 2018, 152, p 88–101.

    Article  CAS  Google Scholar 

  32. D. Kong, C. Dong, X. Ni, L. Zang, J. Yao, C. Man, X. Cheng, X. Kui and X. Li, Mechanical Properties and Corrosion Behavior of Selective Laser Melted 316L Stainless Steel After Different Heat Treatment Processes, J. Mater. Sci. Technol., 2019, 35(7), p 1499–1507.

    Article  Google Scholar 

  33. A. Tozar and I.H. Karahan, Structural and Corrosion Protection Properties of Electrochemically Deposited Nano-sized Zn-Ni Alloy Coatings, Appl. Surf. Sci., 2014, 318, p 15–23.

    Article  CAS  Google Scholar 

  34. V.R. Rao, A.C. Hegde and K.U. Bhat, Effect of Heat Treatment on Structure and Properties of Multilayer Zn-Ni Alloy Coatings, J. Electrochem. Sci. Eng., 2013, 3, p 137–149.

    CAS  Google Scholar 

Download references

Acknowledgment

The author would like to thank the NMAM Institute of Technology Nitte-574110, Karnataka, India, for providing the instrumental facilities.

Conflict of interest

The authors maintain that there is no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ramesh S. Bhat.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhat, R.S., Shetty, S.M. & Kumar, N.A. Electroplating of Zn-Ni Alloy Coating on Mild Steel and Its Electrochemical Studies. J. of Materi Eng and Perform 30, 8188–8195 (2021). https://doi.org/10.1007/s11665-021-06051-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-021-06051-1

Keywords

Navigation