Skip to main content
Log in

Non-Isothermal Phase Transformation Behavior and Thermal Expansion Characteristics of TC21 Alloy

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

The dilatometric curve and its first derivative were utilized for investigating non-isothermal transformation behavior of α+ββ of TC21 alloy during the process of linear heating at four different heating rates. The quenched microstructure of TC21 alloy at different temperatures during the process of phase transformation and the microstructure after thermal expansion were observed by optical microscopy. Results showed that the starting and finishing β transformation temperatures of TC21 alloy increased as the heating rate increased. A high number of equiaxed α phase appeared in the microstructure of the edge area of TC21 alloy after thermal expansion, and the amount of equiaxed α phase decreased with the increase in heating rate. The transformed activation energy calculated by the kinetics equation was about 444.6 kJ mol−1. The transformation process of α+ββ of TC21 alloy under linear heating conditions could be divided into three sections based on the change law of local Avrami exponent with the increasing transformed volume fraction. These three sections could be explained by different nucleation and growth mechanisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data Availability

The raw/processed data required to reproduce these findings cannot be shared at this time as the data also form part of an ongoing study.

References

  1. D. Banerjee and J.C. Williams, Perspectives on Titanium Science and Technology, Acta Mater., 2013, 61, p 844–879.

    Article  CAS  Google Scholar 

  2. B. Ellyson, J. Klemm-Toole, K. Clarke, R. Field, M. Kaufman and A. Clarke, Tuning the Strength and Ductility Balance of a TRIP Titanium Alloy, Scr. Mater., 2021, 194, p 113641.

    Article  CAS  Google Scholar 

  3. B. Yuan, J. Du, X. Zhang, Q. Chen, Y. Wan, Z. Xing and H. Zhan, Microstructures and Room-Temperature Compressive Properties of Ti6Al4V Alloy Processed by Continuous Multistep Hydrogenation Treatment, Int. J. Hydrog. Energy, 2020, 45, p 25567–25579.

    Article  CAS  Google Scholar 

  4. Y.-Q. Jiang, Y.C. Lin, G.-Q. Wang, G.-D. Pang, M.-S. Chen and Z.-C. Huang, Microstructure Evolution and a Unified Constitutive Model for a Ti-55511 Alloy Deformed in β Region, J. Alloy. Compd., 2021, 870, p 159534.

    Article  CAS  Google Scholar 

  5. B. Yuan, X. Liu, J. Du, Q. Chen, Y. Wan, Y. Xiang, Y. Tang, X. Zhang and Z. Huang, Effects of Hydrogenation Temperature on Room-Temperature Compressive Properties of CMHT-Treated Ti6Al4V Alloy, J. Mater. Sci. Technol., 2021, 72, p 132–143.

    Article  Google Scholar 

  6. C. Tan, Q. Sun, G. Zhang and Y. Zhao, High-Cycle Fatigue of a Titanium Alloy: the Role of Microstructure in Slip Irreversibility and Crack Initiation, J. Mater. Sci., 2020, 55, p 12476–12487.

    Article  CAS  Google Scholar 

  7. Y.-Q. Jiang, Y.C. Lin, X.-Y. Zhang, C. Chen, Q.-W. Wang and G.-D. Pang, Isothermal Tensile Deformation Behaviors and Fracture Mechanism of Ti-5Al-5Mo-5V-1Cr-1Fe Alloy in β Phase Field, Vacuum, 2018, 156, p 187–197.

    Article  CAS  Google Scholar 

  8. C. Cui, B. Hu, L. Zhao and S. Liu, Titanium Alloy Production Technology, Market Prospects and Industry Development, Mater. Des., 2011, 32, p 1684–1691.

    Article  CAS  Google Scholar 

  9. G.G. Yapici, I. Karaman and Z.-P. Luo, Mechanical Twinning and Texture Evolution in Severely Deformed Ti–6Al–4V at High Temperatures, Acta Mater., 2006, 54, p 3755–3771.

    Article  CAS  Google Scholar 

  10. B.G. Yuan, Y.B. Zheng, L.Q. Gong, Q. Chen and M. Lv, Effect of Hydrogen Content on Microstructures and Room-Temperature Compressive Properties of TC21 Alloy, Mater. Des., 2016, 94, p 330–337.

    Article  CAS  Google Scholar 

  11. Y. Fei, L. Zhou, H. Qu, Y. Zhao and C. Huang, The Phase and Microstructure of TC21 Alloy, Mater. Sci. Eng. A, 2008, 494, p 166–172.

    Article  Google Scholar 

  12. Y. Zhu, W. Zeng, F. Feng, Y. Sun, Y. Han and Y. Zhou, Characterization of Hot Deformation Behavior of As-Cast TC21 Titanium Alloy Using Processing Map, Mater. Sci. Eng. A, 2011, 528, p 1757–1763.

    Article  Google Scholar 

  13. Y. Li, L. Zhou, J. Lin, H. Chang and F. Li, Phase Transformation Behavior and Kinetics of High Nb–TiAl Alloy during Continuous Cooling, J. Alloy. Compd., 2016, 668, p 22–26.

    Article  CAS  Google Scholar 

  14. G.-D. Pang, Y.C. Lin, Y.-Q. Jiang, X.-Y. Zhang, X.-G. Liu, Y.-W. Xiao and K.-C. Zhou, Precipitation Behaviors and Orientation Evolution Mechanisms of α Phases in Ti-55511 Titanium Alloy During Heat Treatment and Subsequent Hot Deformation, Mater. Charact., 2020, 167, p 110471.

    Article  CAS  Google Scholar 

  15. Y.-Q. Jiang, Y.C. Lin, C. Zhao, M.-S. Chen and H. Daoguang, A New Method to Increase the Spheroidization Rate of Lamellar α Microstructure During Hot Deformation of a Ti–6Al–4V Alloy, Adv. Eng. Mater., 2020, 22, p 2000447.

    Article  CAS  Google Scholar 

  16. Q.-W. Wang, Y.C. Lin, Y.-Q. Jiang, X.-G. Liu, X.-Y. Zhang, D.-D. Chen, C. Chen and K.-C. Zhou, Precipitation Behavior of a β-Quenched Ti-5Al-5Mo-5V-1Cr-1Fe Alloy During High-Temperature Compression, Mater. Charact., 2019, 151, p 358–367.

    Article  CAS  Google Scholar 

  17. T.K. Zhu and M.Q. Li, Effect of Hydrogen on the β Transus Temperature of TC21 Alloy, Mater. Charact., 2011, 62, p 852–856.

    Article  CAS  Google Scholar 

  18. V.A. Kumar, R.K. Gupta, V.S.K. Chakravadhanula, A. Rao, P. Mjnv and S. Murty, Effect of Test Temperature on Tensile Behavior of Ti-5Al-5V-2Mo-1Cr-1Fe (α+β) Titanium Alloy with Initial Microstructures in Hot Forged and Heat Treated Conditions, Metall. Mater. Trans. A, 2019, 50, p 2702–2719.

    Article  CAS  Google Scholar 

  19. Z. Zhou, M. Lai, B. Tang, H. Kou, H. Chang, Z. Zhu, J. Li and L. Zhou, Non-Isothermal Phase Transformation Kinetics of ω Phase in TB-13 Titanium Alloys, Mater. Sci. Eng. A, 2010, 527, p 5100–5104.

    Article  Google Scholar 

  20. Y.-Y. Zong, S.-H. Huang, B. Guo and D.-B. Shan, In Situ Study of Phase Transformations in Ti–6Al–4V–xH Alloys, Trans. Nonferrous Met. Soc. China, 2015, 25, p 2901–2911.

    Article  CAS  Google Scholar 

  21. F. Chen, G. Xu, X. Zhang and K. Zhou, Exploring the Phase Transformation in β-Quenched Ti-55531 Alloy during Continuous Heating via Dilatometric Measurement, Microstructure Characterization, and Diffusion Analysis, Metall. Mater. Trans. A, 2016, 47, p 5383–5394.

    Article  CAS  Google Scholar 

  22. Y.C. Lin, Y. Tang, Y.-Q. Jiang, J. Chen, D. Wang and H. Daoguang, Precipitation of Secondary Phase and Phase Transformation Behavior of a Solution-Treated Ti-6Al-4V Alloy during High-Temperature Aging, Adv. Eng. Mater., 2020, 22, p 1901436.

    Article  CAS  Google Scholar 

  23. Y. Wang, H. Kou, H. Chang, Z. Zhu, X. Su, J. Li and L. Zhou, Phase Transformation in TC21 Alloy during Continuous Heating, J. Alloy. Compd., 2009, 472, p 252–256.

    Article  CAS  Google Scholar 

  24. J.W. Elmer, T.A. Palmer, S.S. Babu and E.D. Specht, In Situ Observations of Lattice Expansion and Transformation Rates of α and β Phases in Ti–6Al–4V, Mater. Sci. Eng. A, 2005, 391, p 104–113.

    Article  Google Scholar 

  25. H. Yu, W. Li, H. Zou, S. Li, T. Zhai and L. Liu, Study on Non-Isothermal Transformation of Ti-6Al-4V in Solution Heating Stage, Metals, 2019, 9, p 968.

    Article  CAS  Google Scholar 

  26. Y. Wang, H. Kou, H. Chang, Z. Zhu, F. Zhang, J. Li and L. Zhou, Influence of Solution Temperature on Phase Transformation of TC21 Alloy, Mater. Sci. Eng. A, 2009, 508, p 76–82.

    Article  Google Scholar 

  27. R.N. Elshaer, K.M. Ibrahim, A.F. Barakat, A.I. Farahat and R.R. Abbas, Determination of Phase Transformation for TC21 Ti-Alloy by Dilatometry Method, OJMetal, 2019, 9, p 1–10.

    Article  CAS  Google Scholar 

  28. H. Zhimin, Z. Yongqing, W. Zeng, M. Xiaonan, L. Wenguang and Z. Pengsheng, Effect of Heat Treatment on the Microstructure Development of TC21 Alloy, Rare Metal Mat. Eng., 2017, 46, p 2087–2091.

    Article  Google Scholar 

  29. Q. Hui, X. Xue, H. Kou, M. Lai, B. Tang and J. Li, Kinetics of the ω Phase Transformation of Ti-7333 Titanium Alloy during Continuous Heating, J. Mater. Sci., 2013, 48, p 1966–1972.

    Article  CAS  Google Scholar 

  30. M.-P. Wan, Y.-Q. Zhao and W.-D. Zeng, Phase Transformation Kinetics of Ti-1300 Alloy during Continuous Heating, Rare Met., 2015, 34, p 233–238.

    Article  CAS  Google Scholar 

  31. Y.C. Liu, F. Sommer and E.J. Mittemeijer, Abnormal Austenite-Ferrite Transformation Behaviour in Substitutional Fe-Based Alloys, Acta Mater., 2003, 51, p 507–519.

    Article  CAS  Google Scholar 

  32. F. Liu, S.J. Song, F. Sommer and E.J. Mittemeijer, Evaluation of the Maximum Transformation Rate for Analyzing Solid-State Phase Transformation Kinetics, Acta Mater., 2009, 57, p 6176–6190.

    Article  CAS  Google Scholar 

  33. Y.G. Deng, Y. Li, H. Di and R.D.K. Misra, Effect of Heating Rate During Continuous Annealing on Microstructure and Mechanical Properties of High-Strength Dual-Phase Steel, J. Mater. Eng. Perform., 2019, 28, p 4556–4564.

    Article  CAS  Google Scholar 

  34. X.-D. Jiang, H.-W. Zhang, Q.-Y. Wen, Z.-Y. Zhong, Y. Zheng and X.-L. Tang, Crystallization Kinetics of CoNbZr Amorphous Alloys Thin Films, Mater. Chem. Phys., 2004, 88, p 197–201.

    Article  CAS  Google Scholar 

  35. W. Lu, B. Yan and W.-H. Huang, Complex Primary Crystallization Kinetics of Amorphous Finemet Alloy, J. Non-Cryst. Solids, 2005, 351, p 3320–3324.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (Grant No. 51875157) and the Fundamental Research Funds for the Central Universities (Grant No. JD2019JGPY0016).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qiang Chen.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yuan, B., Chen, W., Tang, A. et al. Non-Isothermal Phase Transformation Behavior and Thermal Expansion Characteristics of TC21 Alloy. J. of Materi Eng and Perform 30, 7926–7934 (2021). https://doi.org/10.1007/s11665-021-05984-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-021-05984-x

Keywords

Navigation