Skip to main content
Log in

Microstructure, Tensile Properties, and Wear Resistance of In Situ TiB2/6061 Composites Prepared by High Energy Ball Milling and Stir Casting

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

In-situ synthesized TiB2/6061 composites were prepared from Al-K2TiF6-KBF4 by high energy ball milling and stir casting. Phase analysis and microstructure observation of the samples were characterized by XRD, SEM and EDS, respectively. The effect of TiB2 particle content on the microstructure, tensile properties and wear resistance of the composites was studied. The results show that the average size of TiB2 particles is 1 μm, which is polygonal shape. The average grain size of the composites can be refined significantly as the TiB2 particle mass content increased from 1 to 3%; however, the grain coarsening occurs in the 5 wt.% TiB2/6061composites. The 3 wt.% TiB2/6061 composites have best tensile strength, yield strength and Young’s modulus among the composites in ranges of the TiB2 mass fraction from 1 to 5%. Strengthening mechanisms of the TiB2/6061 composites were fine grain strengthening, Orwan strengthening and CTE strengthening, in which the CTE strengthening plays an important role as increasing the TiB2 content. The pin-on-disk wear test results indicated that the average friction coefficient and wear rate of the TiB2/6061 composites increased firstly and then decreased with increasing the TiB2 content from 1 to 5 wt.%. The wear mechanism of the TiB2/6061 composites was discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

taken from TiB2/6061 composites

Fig. 8

taken from TiB2/6061 composites

Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. T.K. Ye, Y.X. Xu and J. Ren, Effects of SiC Particle Size on Mechanical Properties of SiC Particle Reinforced Aluminum Metal Matrix Composite, Mat. Sci. Eng. A, 2019, 753, p 146–155.

    Article  CAS  Google Scholar 

  2. M. Cabeza, I. Feijoo, P. Merino, G. Pena, M.C. Pérez, S. Cruza and P. Rey, Effect of High Energy Ball Milling on the Morphology, Microstructure and Properties of Nano-Sized TiC Particle-Reinforced 6005A Aluminium Alloy Matrix Composite, Powder. Technol., 2017, 321, p 31–43.

    Article  CAS  Google Scholar 

  3. G.Q. Huang, J. Wu, W.T. Hou and Y.F. Shen, Microstructure, Mechanical Properties and Strengthening Mechanism of Titanium Particle Reinforced Aluminum Matrix Composites Produced by Submerged Friction Stir Processing, Mat. Sci. Eng. A, 2018, 734, p 353–363.

    Article  CAS  Google Scholar 

  4. R.F. Liu, W.X. Wang, H.S. Chen, M.B. Tan and Y.Y. Zhang, Microstructure Evolution and Mechanical Properties of Micro-/Nano-Bimodal Size B4C Particles Reinforced Aluminum Matrix Composites Prepared by SPS Followed by HER, Vacuum, 2018, 151, p 39–50.

    Article  CAS  Google Scholar 

  5. V.G. Arigela, N.R. Palukuri, D. Singh, S.K. Kolli, J. Rengaswamy, P. Chekhonin, J. Scharnweber and W. Skrotzki, Evolution of Microstructure and Mechanical Properties in 2014 and 6063 Similar and Dissimilar Aluminium Alloy Laminates Produced by Accumulative Roll Bonding, J. Alloy. Compd., 2019, 790, p 917–927.

    Article  CAS  Google Scholar 

  6. P. Garg, A. Jamwal, D. Kumar, K.K. Sadasivuni, C.M. Hussain and P. Gupta, Advance Research Progresses in Aluminium Matrix Composites: Manufacturing and Applications, J. Mater. Res. Technol., 2019, 8(5), p 4924–4939.

    Article  CAS  Google Scholar 

  7. Z.N. Chen, T.M. Wang, Y.P. Zheng, Y.F. Zhao, H.J. Kang and L. Gao, Development of TiB2 Reinforced Aluminum Foundry Alloy Based In Situ Composites – Part I: An Improved Halide Salt Route to Fabricate Al–5 wt.%TiB2 Master Composite, Mat. Sci. Eng. A, 2014, 605, p 301–309.

    Article  CAS  Google Scholar 

  8. M. Ao, H.M. Liu and C.F. Dong, The Effect of La2O3 Addition on Intermetallic-Free Aluminium Matrix Composites Reinforced with TiC and Al2O3 Ceramic Particles, Ceram. Int., 2019, 45(9), p 12001–12009.

    Article  CAS  Google Scholar 

  9. V. Chak, H. Chattopadhyay and T.L. Dora, A Review on fabrication Methods, Reinforcements and Mechanical Properties of Aluminum Matrix Composites, J. Manuf. Process., 2020, 56, p 1059–1074.

    Article  Google Scholar 

  10. N. Muralidharan, K. Chockalingam, I. Dinaharan and K. Kalaiselvan, MICROSTRUCTURE and Mechanical behavior of AA2024 Aluminum Matrix Composites Reinforced with In Situ Synthesized ZrB2 Particles, J. Alloy. Compd., 2018, 735, p 2167–2174.

    Article  CAS  Google Scholar 

  11. S.A. Sajjadi, H.R. Ezatpour and H. Beygi, Microstructure and Mechanical Properties of Al–Al2O3 Micro and Nano Composites Fabricated by Stir Casting, Mat. Sci. Eng. A, 2011, 528(29), p 8765–8771.

    Article  CAS  Google Scholar 

  12. P. Samal, P.R. Vundavilli, A. Meher and M.M. Mahapatra, Recent Progress in Aluminum Metal matrix Composites: A Review on Processing, Mechanical and Wear Properties, J. Manuf. Process, 2020, 59, p 131–152.

    Article  Google Scholar 

  13. K. Sinan, Effects of TiB2 Nanoparticle Content on the Microstructure and Mechanical Properties of Aluminum Matrix Nanocomposites, Mater Test, 2017, 59(10), p 844–852.

    Article  Google Scholar 

  14. A.R. Najarian, R. Emadi and M. Hamzeh, Fabrication of as-Cast Al Matrix Composite Reinforced by Al2O3/Al3Ni Hybrid Particles Via in-Situ Reaction and Evaluation of its Mechanical Properties, Mat. Sci. Eng. B, 2018, 231, p 57–65.

    Article  CAS  Google Scholar 

  15. Y. Afkham, R.A. Khosroshahi, S. Rahimpour, C. Aavani, D. Brabazon and R.T. Mousavian, Enhanced Mechanical Properties of In Situ Aluminium Matrix Composites Reinforced by Alumina Nanoparticles, Arch. Civ. Mech. Eng., 2018, 18(1), p 215–226.

    Article  Google Scholar 

  16. K.N. Mathan and K.L. Annamalai, Characterization and Tribological analysis on AA 6061 Reinforced with AlN and Zrb2 In Situ Composites, J. Mater. Res. Technol., 2019, 8(1), p 969–980.

    Article  Google Scholar 

  17. C.S. Ramesh, S. Pramod and R. Keshavamurthy, A Study on Microstructure and Mechanical Properties of Al 6061–TiB2 In-Situ Composites, Mat. Sci. Eng. A, 2011, 528(12), p 4125–4132.

    Article  Google Scholar 

  18. Y. Pazhouhanfar and B. Eghbali, Microstructural Characterization and Mechanical Properties of TiB2 Reinforced Al6061 Matrix Composites Produced Using Stir Casting Process, Mat. Sci. Eng. A, 2018, 710, p 172–180.

    Article  CAS  Google Scholar 

  19. J. Zhang, D. Zhang, H. Zhu and Z. Xie, In-Situ TiC Reinforced Al-4Cu Matrix Composite: Processing, Microstructure and Mechanical Properties, Mat. Sci. Eng. A, 2020, 794, p 139946.

    Article  CAS  Google Scholar 

  20. H. Yang, T. Gao, Y. Wu, H. Zhang, J. Nie and X. Liu, Microstructure and Mechanical Properties at Both Room and High Temperature of In-Situ TiC Reinforced Al–4.5Cu Matrix Nanocomposite, J. Alloy. Compd., 2018, 767, p 606–616.

    Article  CAS  Google Scholar 

  21. T. Gao, L. Liu, J. Song, G. Liu and X. Liu, Synthesis and Characterization of an In-Situ Al2O3/Al–Cu Composite with a Heterogeneous Structure, J. Alloy. Compd., 2021, 868, p 159283.

    Article  CAS  Google Scholar 

  22. S. Lei, X.F. Li, Y.Q. Deng, Y.K. Xiao, Y.C. Chen and H.W. Wang, Microstructure and Mechanical Properties of Electron Beam Freeform Fabricated TiB2/Al-Cu Composite, Mater. Lett., 2020, 277, p 128273.

    Article  CAS  Google Scholar 

  23. X.X. Dong, H. Youssef, Y.J. Zhang, H.L. Yang, S.H. Wang and S.X. Ji, Advanced Heat Treated Die-Cast Aluminium Composites Fabricated by TiB2 Nanoparticle Implantation, Mater. Des., 2019, 186, p 108372.

    Article  Google Scholar 

  24. J. Liu, Z.W. Liu, Z.W. Dong, X.L. Cheng, Q.L. Zheng, J. Li, Z. Sha, Z.F. Huang, Y.M. Gao, J.D. Xing and Q.Y. Han, On the Preparation and Mechanical Properties of In Situ Small-Sized TiB2/Al-4.5Cu Composites Via Ultrasound Assisted RD Method, J. Alloy. Compd., 2018, 765, p 1008–1017.

    Article  CAS  Google Scholar 

  25. S. Mozammil, J. Karloopia, R. Verma and P.K. Jha, Effect of Varying TiB2 Reinforcement and its Ageing Behaviour on Tensile and Hardness Properties of In-Situ Al-4.5%Cu-xTiB2 Composite, J. Alloy. Compd., 2019, 793, p 454–466.

    Article  CAS  Google Scholar 

  26. F. Chen, Z. Chen, F. Mao, T. Wang and Z. Cao, TiB2 Reinforced Aluminum Based In Situ Composites Fabricated by Stir Casting, Mat. Sci. Eng. A, 2015, 625, p 357–368.

    Article  CAS  Google Scholar 

  27. S.L. Zhang, J. Yang, B.R. Zhang, Y.T. Zhao, G. Chen, X.X. Shi and Z.P. Liang, A Novel Fabrication Technology of In Situ TiB2/6063Al Composites: High Energy Ball Milling and Melt In Situ Reaction, J. Alloy. Compd., 2015, 639, p 215–223.

    Article  CAS  Google Scholar 

  28. L. Lü, M.O. Lai, Y. Su, H.L. Teo and C.F. Feng, In Situ TiB2 Reinforced Al Alloy Composites, Scripta Mater., 2001, 45(9), p 1017–1023.

    Article  Google Scholar 

  29. K.L. Tee, L. Lu and M.O. Lai, Synthesis of In Situ Al-TiB2 Composites Using Stir Cast Route, Compos. Struct., 1999, 47(1–4), p 589–593.

    Article  Google Scholar 

  30. J.V. Wood, D.G. McCartney, K. Dinsdale, J.L.F. Kellie and P. Davies, Casting and Mechanical Properties of a Reactively Cast Al-TiB2 Alloy, Cast Metal., 1995, 8(1), p 57–64.

  31. J. Yi, G. Wang, S.K. Li, Z.W. Liu and Y.L. Gong, Effect of Post-Weld Heat Treatment on Microstructure and Mechanical Properties of Welded Joints of 6061–T6 Aluminum Alloy, T. Nonferr. Metal. Soc., 2019, 29(10), p 2035–2046.

    Article  CAS  Google Scholar 

  32. S. Agrawal, A.K. Ghose and I. Chakrabarty, Effect of Rotary Electromagnetic Stirring During Solidification of In-Situ Al-TiB2 Composites, Mater. Design., 2017, 113, p 195–206.

    Article  CAS  Google Scholar 

  33. A. Kumar, R.K. Gautam and R. Tyagi, Dry Sliding Wear characteristics of In Situ Synthesized Al-Tic Composites, Compos. Interface., 2016, 23(6), p 469–480.

    Article  CAS  Google Scholar 

  34. Z.Y. Yu, N.Q. Zhao, E.Z. Liu, C.S. Shi, X.W. Du and J. Wang, Low-Temperature Synthesis of Aluminum Borate Nanowhiskers on the Surface of Aluminum Powder Promoted by Ball-Milling Pretreatment, Powder. Technol., 2011, 212(2), p 310–315.

    Article  CAS  Google Scholar 

  35. R. Raghu, J. Nampoothiri and T.S. Kumar, In-Situ Generation of MgAl2O4 Particles in Al-Mg Alloy Using H3BO3 Addition for Grain Refinement Under Ultrasonic Treatment, Measurement, 2018, 129, p 389–394.

    Article  Google Scholar 

  36. I.S. Lee, C. Hsu, C.F. Chen, N.J. Ho and P.W. Kao, Particle-Reinforced Aluminum Matrix Composites Produced from Powder Mixtures Via Friction Stir Processing, Compos. Sci. Technol., 2011, 71(5), p 693–698.

    Article  CAS  Google Scholar 

  37. T.W. Clyne and P.J. Withers, An Introduction to Metal Matrix Composites, 1st ed. Cambridge University Press, Cambridge, 1993.

    Book  Google Scholar 

  38. S. Jayalakshmi, S. Gupta, S. Sankaranarayanan, S. Sahu and M. Gupta, Structural and Mechanical Properties of Ni60Nb40 Amorphous Alloy Particle Reinforced Al-Based composites Produced by Microwave-Assisted Rapid Sintering, Mat. Sci. Eng. A, 2013, 581, p 119–127.

    Article  CAS  Google Scholar 

  39. G. Huang, J. Wu, W. Hou and Y. Shen, Microstructure, Mechanical Properties and Strengthening Mechanism of Titanium Particle Reinforced Aluminum Matrix Composites Produced by Submerged Friction Stir Processing, Mat. Sci. Eng. A, 2018, 734, p 353–363.

    Article  CAS  Google Scholar 

  40. B. Bhushan, Introduction to Tribology, 2nd ed. Wiley, Chichester, 2013.

    Book  Google Scholar 

Download references

Acknowledgments

This study was funded by National Natural Science Foundation for Youths (CN) (No. 51805235), Scientific Research Foundation of Educational Department of Liaoning Province for Basic Research (CN) (No. LJ2019JL008), Guidance Project of Natural Science Foundation of Liaoning Province (CN) (2019-ZD-0049), Discipline Innovation Team of Liaoning Technical University(LNTU20TD-18)and the PhD Research Startup Fund of Liaoning Technical University (CN) (No. 14-1034).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chao Meng.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhuang, W., Yang, H., Yang, W. et al. Microstructure, Tensile Properties, and Wear Resistance of In Situ TiB2/6061 Composites Prepared by High Energy Ball Milling and Stir Casting. J. of Materi Eng and Perform 30, 7730–7740 (2021). https://doi.org/10.1007/s11665-021-05964-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-021-05964-1

Keywords

Navigation