Skip to main content
Log in

Unexpected Stress Corrosion Cracking Improvement Achieved by Recrystallized Layer in Al-Zn-Mg Alloy

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

To explore the correlation between the stress corrosion sensitivity and formation processing for high-strength Al-Zn-Mg alloy, extrusion surface and the matrix were investigated by microstructural characterizations, electrochemistry, and stress corrosion cracking (SCC) tests. Larger, but with low density and discontinuity, grain boundary precipitates (GBPs, − 60 nm and − 3.7% area fraction) and intermetallic particles (IMPs, − 0.5% area fraction) were achieved in the secondary recrystallized (SR) coarse-grained layer compared with the non-recrystallized matrix. The maximum Volta potential differences between the IMPs and Al matrix were about 373 mV, causing the pitting initiation by micro-galvanic effect. The decreased pitting density and the low residual stress in the SR layer reduced the available initiation sites for SCC. Thus, the SR layer acted as a barrier layer to reduce the SCC susceptibility of the extruded Al-Zn-Mg alloy in Cl-containing environments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

taken from the extruded Al-Zn-Mg alloy

Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8.
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. S.P. Knight, K. Pohl, N.J.H. Holroyd, N. Birbilis, P.A. Rometsch, B.C. Muddle, R. Goswami and S.P. Lynch, Some Effects of Alloy Composition on Stress Corrosion Cracking in Al-Zn-Mg-Cu Alloys, Corros. Sci., 2015, 98, p 50–62.

    Article  CAS  Google Scholar 

  2. P.K. Rout, M.M. Ghosh and K.S. Ghosh, Effect of Solution pH on Electrochemical and Stress Corrosion Cracking Behaviour of a 7150 Al–Zn–Mg–Cu alloy, Mater. Sci. Eng. A, 2014, 604, p 156–165.

    Article  CAS  Google Scholar 

  3. Y. Zhang, S. Jin, P.W. Trimby, X. Liao, M.Y. Murashkin, R.Z. Valiev, J. Liu, J.M. Cairney, S.P. Ringer and G. Sha, Dynamic Precipitation, Segregation and Strengthening of an Al-Zn-Mg-Cu Alloy (AA7075) Processed by High-Pressure Torsion, Acta Mater., 2019, 162, p 19–32.

    Article  CAS  Google Scholar 

  4. L. De and W.Z. Pari Jr., Misiolek. Acta. Mater., 2018, 56, p 6174.

    Google Scholar 

  5. T.T. Sasaki, K. Yamamoto, T. Honma, S. Kamado and K. Hono, A High-Strength Mg–Sn–Zn–Al Alloy Extruded at Low Temperature, Scr. Mater., 2008, 59, p 1111–1114.

    Article  CAS  Google Scholar 

  6. W.H. Van Geertruyden, H.M. Browne, W.Z. Misiolek and P.T. Wang, Evolution of Surface Recrystallization During Indirect Extrusion of 6xxx Aluminum Alloys, Metall. Mater. Trans. A, 2005, 36(4), p 1049–1056.

    Article  Google Scholar 

  7. P. De Luigi Jr. and Z.M. Wojciech, Theoretical Predictions and Experimental Verification of Surface Grain Structure Evolution for AA6061 During Hot Rolling, Acta Mater., 2008, 56, p 6174–6185.

    Article  CAS  Google Scholar 

  8. A. Güzel, A. Jäger, F. Parvizian, H.-G. Lambers, A.E. Tekkaya, B. Svendsen and H.J. Maier, A New Method for Determining Dynamic Grain Structure Evolution During Hot Aluminum Extrusion, J. Mater. Process. Tech., 2012, 212, p 323–330.

    Article  CAS  Google Scholar 

  9. Y. Ning and C. Sun, Study on the Coarse and Fine Grains of Aluminum Alloys LY12CZ, Mater. Mech. Eng., 1992, 4, p 39–43.

    Google Scholar 

  10. Z. Peng and T. Sheppard, Simulation of Multi-hole Die Extrusion, Mater. Sci. Eng. A., 2004, 367, p 329–342.

    Article  CAS  Google Scholar 

  11. L. Ye, X. Yao, H. Lin, S. Liu, Y. Deng and X. Zhang, Coarse grain layer on stress corrosion cracking resistance of Al–Zn–Mg Alloy, Chinese Materials Conference. Springer, Singapore, 2017, p 337–347

    Google Scholar 

  12. C. Duan, J. Tang, W. Ma, L. Ye, H. Jiang, Y. Deng and X. Zhang, Intergranular Corrosion Behavior of Extruded 6005A Alloy Profile with Different Microstructures, J. Mater. Sci., 2020, 5, p 10833–10848.

    Article  CAS  Google Scholar 

  13. X. Zhang, X. Zhou, J.-O. Nilsson, Z. Dong and C. Cai, Corrosion Behaviour of AA6082 Al-Mg-Si Alloy Extrusion: Recrystallized and Non-Recrystallized Structures, Corros. Sci., 2018, 144, p 163–171.

    Article  CAS  Google Scholar 

  14. J. Wloka, T. Hack and S. Virtanen, Influence of Temper and Surface Condition on the Exfoliation Behaviour of High Strength Al–Zn–Mg–Cu Alloys, Corros. Sci., 2007, 49, p 1437–1449.

    Article  CAS  Google Scholar 

  15. W. Mai and S. Soghrati, A Phase Field Model for Simulating the Stress Corrosion Cracking Initiated from Pits, Corros. Sci., 2017, 125, p 87–98.

    Article  CAS  Google Scholar 

  16. L. Chang, M.G. Burke and F. Scenini, Stress Corrosion Crack Initiation in Machined Type 316L Austenitic Stainless Steel in Simulated Pressurized Water Reactor Primary Water, Corros. Sci., 2018, 138, p 54–65.

    Article  CAS  Google Scholar 

  17. Li. Wang, C. Dong, J. Yao, Z. Dai, C. Man, Y. Yin and K.X.X. Li, The Effect of ɳ-Ni3Ti Precipitates and Reversed Austenite on the Passive Film Stability of Nickel-Rich Custom 465 Steel, Corros. Sci., 2019, 154, p 178–190.

    Article  CAS  Google Scholar 

  18. S.K. Kairy, S. Turk, N. Birbilis and A. Shekhter, The Role of Microstructure and Microchemistry on Intergranular Corrosion of Aluminum Alloy AA7085-T7452, Corros. Sci., 2018, 143, p 414–427.

    Article  CAS  Google Scholar 

  19. H.C. Ma, Z.Y. Liu, C.W. Du, H.R. Wang, X.G. Lia, D.W. Zhang and Z.Y. Cui, Stress Corrosion Cracking of E690 Steel as a Welded Joint in a Simulated Marine Atmosphere Containing Sulphur Dioxide, Corros. Sci., 2015, 100, p 627–641.

    Article  CAS  Google Scholar 

  20. D. Kong, C. Dong, X. Ni, L. Zhang, H. Luo, R. Li, L. Wang, C. Man and X. Li, Superior Resistance to Hydrogen Damage for Selective Laser Melted 316L Stainless Steel in a Proton Exchange Membrane Fuel Cell Environment, Corros. Sci., 2020, 166, p 108425.

    Article  CAS  Google Scholar 

  21. X. Wang, Q. Pan, L. Liu, S. Xiong, W. Wang, J. Lai, Y. Sun and Z. Huang, Characterization of Hot Extrusion and Heat Treatment on Mechanical Properties in a Spray Formed Ultra-High Strength Al-Zn-Mg-Cu Alloy, Mater. Charact., 2018, 144, p 131–140.

    Article  CAS  Google Scholar 

  22. G. Sha and A. Cerezo, Early-stage Precipitation in Al–Zn–Mg–Cu Alloy (7050), Acta Mater., 2004, 52(15), p 4503–4516.

    Article  CAS  Google Scholar 

  23. R. Goswami, S. Lynch, N.J. Henry Holroyd, S.P. Knight and R.L. Holtz, Evolution of Grain Boundary Precipitates in Al 7075 Upon Aging and Correlation with Stress Corrosion Cracking Behavior, Metall. Mater. Trans. A, 2013, 44, p 1268–1278.

    Article  CAS  Google Scholar 

  24. P.K. Poulose, J.E. Morral and A.J. Mcevily, Stress Corrosion Crack Velocity and Grain Boundary Precipitates in an Al-Zn-Mg Alloy, Metall. Mater. Trans. A, 1974, 5(6), p 1393–1400.

    Article  CAS  Google Scholar 

  25. A. Wagner and R.N. Shenoy, The Effect of Copper, Chromium, and Zirconium on the Microstructure and Mechanical Properties of Al-Zn-Mg-Cu alloys, Metall. Mater Trans. A., 1991, 22, p 2809–2818. https://doi.org/10.1007/BF02851375

    Article  Google Scholar 

  26. T.M. Yue, L.J. Yan, C.P. Chan, C.F. Dong, H.C. Man and G.K.H. Pang, Excimer Laser Surface Treatment of Aluminum alloy AA7075 to Improve Corrosion Resistance, Surf. Coat. Tech., 2004, 179, p 158–164.

    Article  CAS  Google Scholar 

  27. G. Šekularac and I. Milošev, Corrosion of Aluminium Alloy AlSi7Mg03 in Artificial Sea Water with Added Sodium Sulphide, Corros. Sci., 2018, 144, p 54–73.

    Article  CAS  Google Scholar 

  28. P. Yi, C. Dong, K. Xiao, C. Man and X. Li, In-situ Investigation of The Semi Conductive Properties and Protective Role of Cu2O Layer Formed on Copper in a Borate Buffer Solution, J. Electroanal. Chem., 2018, 809, p 52–58.

    Article  CAS  Google Scholar 

  29. D. Kong, C. Dong, X. Ni, L. Zhang, J. Yao, C. Man, X. Cheng, K. Xiao and X. Li, Mechanical Properties and Corrosion Behavior of Selective Laser Melted 316L Stainless Steel After Different Heat Treatment Processes, J. Mater. Sci. Technol., 2019, 35(7), p 1499–1507.

    Article  Google Scholar 

  30. M. Urquidi and D.D. Macdonald, Solute-Vacancy Interaction Model and the Effect of Minor Alloying Elements on the Initiation of Pitting Corrosion, J. Electrochem. Soc., 1985, 132(3), p 555–558.

    Article  CAS  Google Scholar 

  31. F.-l Zeng, Z.-L. Wei, J.-F. Li, C.-X. Li, X. Tan, Z. Zhang and Z.-Q. Zheng, Corrosion Mechanism Associated with Mg2Si and Si Particles in Al–Mg–Si Alloys, Trans. Nonferrous Metals Soc., 2011, 21, p 2559–2567.

    Article  CAS  Google Scholar 

  32. E. McCafferty, Sequence of Steps in the Pitting of Aluminum by Chloride Ions, Corros. Sci., 2003, 45(7), p 1421–1438.

    Article  CAS  Google Scholar 

  33. N. Birbilis, M.K. Cavanaugh and R.G. Buchheit, Electrochemical Behavior and Localized Corrosion Associated with Al7Cu2Fe Particles in Aluminum alloy 7075–T651, Corros. Sci., 2006, 48(12), p 4202–4215.

    Article  CAS  Google Scholar 

  34. Lu. Yalin, J. Wang, X. Li, W. Li, R. Li and D. Zhou, Effects of Pre-Deformation on the Microstructures and Corrosion Behavior of 2219 Aluminum Alloys, Mater. Sci. Eng. A, 2018, 723, p 204–211.

    Article  CAS  Google Scholar 

  35. P.S. Pao, S.J. Gill and C.R. Feng, On Fatigue Crack Initiation from Corrosion Pits in 7075–t7351 Aluminum Alloy, Scr. Mater., 2000, 43, p 391–396.

    Article  CAS  Google Scholar 

  36. A.C.U. Rao, V. Vasu, M. Govindaraju and K.V.S. Srinadh, Stress Corrosion Cracking Behaviour of 7xxx Aluminum Alloys: A Literature Review, Trans. Nonferrous Metals Soc., 2016, 26(6), p 1447–1471.

    Article  CAS  Google Scholar 

  37. G.S. Chen, K.C. Wan, M. Gao, R.P. Wei and T.H. Flournoy, Transition from Pitting to Fatigue Crack Growth-Modeling of Corrosion Fatigue Crack Nucleation in a 2024–T3 Aluminum Alloy, Mater. Sci. Eng. A, 1996, 219(1–2), p 126–132.

    Article  Google Scholar 

  38. H.C. Fang, F.H. Luo and K.H. Chen, Effect of Intermetallic Phases and Recrystallization on the Corrosion and Fracture Behavior of an Al-Zn-Mg-Cu-Zr-Yb-Cr Alloy, Mater. Sci. Eng. A., 2017, 684, p 480–490.

    Article  CAS  Google Scholar 

  39. X.M. Li and M.J. Starink, Identification and Analysis of Intermetallic Phases in Overaged Zr-Containing and Cr-Containing Al-Zn-Mg-Cu Alloys, J. Alloy Compd., 2011, 509(2), p 471–476.

    Article  CAS  Google Scholar 

  40. M.H. Maghsoudi, A. Zarei-Hanzaki, H.R. Abedi et al., The Evolution of γ-Mg17Al12 Intermetallic Compound During Accumulative Back Extrusion and Subsequent Ageing Treatment, Philos. Mag., 2015, 95(31), p 3497–3523.

    Article  CAS  Google Scholar 

  41. K.D. Ralston, N. Birbilis, M. Weyland and C.R. Hutchinson, The Effect of Precipitate Size on the Yield Strength-Pitting Corrosion Correlation in Al–Cu–Mg Alloys, Acta Mater., 2010, 58(18), p 5941–5948.

    Article  CAS  Google Scholar 

  42. N. Li, C.F. Dong, C. Man and J.Z. Yao, In situ Electrochemical Atomic Force Microscopy and Auger Electro Spectroscopy Study on The Passive Film Structure of 2024–T3 Aluminum Alloy Combined with a Density Functional Theory Calculation, Adv. Eng. Mater., 2019, 21, p 1900386.

    Article  CAS  Google Scholar 

  43. T.J. Stannard, J.J. Williams, S.S. Singh, A.S.S. Singaravelu, X. Xiao and N. Chawla, 3D Time-Resolved Observations of Corrosion and Corrosion-Fatigue Crack Initiation and Growth in Peak-Aged Al 7075 Using Synchrotron X-ray Tomography, Corros. Sci., 2018, 138, p 340–352.

    Article  CAS  Google Scholar 

  44. B.J. Wang, D.K. Xub, J. Sun and E.H. Han, Effect of Grain Structure on The Stress Corrosion Cracking (SCC) Behavior of An as-Extruded Mg-Zn-Zr alloy, Corros. Sci., 2019, 157, p 347–356.

    Article  CAS  Google Scholar 

  45. Y. Du, Y.A. Chang, B. Huang, W. Gong, Z. Jin, H. Xu, Z. Yuan, Y. Liu, Y. He and F.Y. Xie, Diffusion Coefficients of Some Solutes in fcc and Liquid Al: Critical Evaluation and Correlation, Mater. Sci. Eng. A, 2003, 363, p 140–151.

    Article  CAS  Google Scholar 

  46. Y. Wang, L. Cao, X. Wu, X. Tong, B. Liao, G. Huang and Z. Wang, Effect of Retrogression Treatments on Microstructure, Hardness and Corrosion Behaviors of Aluminum Alloy 7085, J. Alloy Compd., 2020, 814, p 152264.

    Article  CAS  Google Scholar 

  47. C. Meng, Di. Zhang, L. Zhuang and J. Zhang, Correlations Between Stress Corrosion Cracking, Grain Boundary Precipitates and Zn Content of Al–Mg–Zn Alloys, J. Alloy Compd., 2016, 655, p 178–187.

    Article  CAS  Google Scholar 

  48. Y. Ji, C. Dong, L. Chen, K. Xiao and X. Li, High-Throughput Computing for Screening the Potential Alloying Elements of a 7xxx Aluminum Alloy for Increasing the Alloy Resistance to Stress Corrosion Cracking, Corros. Sci., 2021, 183, p 109304.

    Article  CAS  Google Scholar 

  49. X. Fang, M. Song, K. Li, Y. Du, D.D. Zhao, C. Jiang and H. Zhang, Effects of Cu and Al on the Crystal Structure and Composition of η (MgZn2) Phase in Over-aged Al–Zn–Mg–Cu Alloys, J. Mater. Sci., 2012, 47, p 5419–5427.

    Article  CAS  Google Scholar 

  50. T. Ramgopal, P. Schmutz and G.S. Frankel, Electrochemical Behavior of Thin Film Analogs of Mg(Zn, Cu, Al)2, J. Electrochem. Soc., 2001, 148, p B348–B356.

    Article  CAS  Google Scholar 

  51. X.Y. Sun, B. Zhang, H.Q. Lin, Y. Zhou, L. Sun, J.Q. Wang, E.H. Han and W. Ke, Correlations Between Stress Corrosion Cracking Susceptibility and Grain Boundary Microstructures for an Al–Zn–Mg Alloy, Corros. Sci, 2013, 77, p 103–112.

    Article  CAS  Google Scholar 

  52. K. Rajan, W. Wallace and J.C. Beddoes, Microstructural Study of a High-Strength Stress-Corrosion Resistant 7075 Aluminum Alloy, J. Mater. Sci., 1982, 17(10), p 2817–2824.

    Article  CAS  Google Scholar 

  53. H. Su, H. Toda, R. Masunaga, K. Shimizu, H. Gao, K. Sasaki, M.S. Bhuiyan, K. Uesugi, A. Takeuchi and Y. Watanabe, Influence of Hydrogen on Strain Localization and Fracture Behavior in AlZnMgCu Aluminum Alloys, Acta Mater., 2018, 159, p 332–343.

    Article  CAS  Google Scholar 

  54. Y. Li, Z. Liu, E. Fan, Y. Huang, Yi. Fan and B. Zhao, Effect of Cathodic Potential on Stress Corrosion Cracking Behavior of Different Heat-Affected Zone Microstructures of E690 Steel in Artificial Seawater, J. Mater. Sci. Technol., 2021, 64, p 141–152.

    Article  Google Scholar 

  55. D. Kong, X. Ni, C. Dong, X. Lei, L. Zhang, C. Man, J. Yao, X. Cheng and X. Li, Bio-Functional and Anti-Corrosive 3D Printing 316L Stainless Steel Fabricated by Selective Laser Melting, Mater. Design., 2018, 152, p 88–101.

    Article  CAS  Google Scholar 

  56. P. Marcus, V. Maurice and H.H. Strehblow, Localized Corrosion (Pitting): A Model of Passivity Breakdown Including the Role of the Oxide Layer Nanostructure, Corros. Sci., 2008, 50, p 2704.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Key Research and Development Program of China (No. 2017YFB0702300), Fundamental Research Funds for the Central Universities (No. FRF-TP-19-003B2), and the Leading Talent Engineering Project for Taishan Industry.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chaofang Dong.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ao, M., Dong, C., Li, N. et al. Unexpected Stress Corrosion Cracking Improvement Achieved by Recrystallized Layer in Al-Zn-Mg Alloy. J. of Materi Eng and Perform 30, 6258–6268 (2021). https://doi.org/10.1007/s11665-021-05856-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-021-05856-4

Keywords

Navigation