Skip to main content
Log in

Effect of Friction Stir Processing on Microstructure, Mechanical Properties, and Corrosion Fatigue Behavior of AA5083-H111 Metal Inert Gas Welded Joint

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

In this study, friction stir processing (FSP) is applied on MIG welded aluminum alloy 5083-H111 plates, with the objective of improving the mechanical strength and corrosion fatigue life of the welded joints. The process is performed using tool rotational speeds of 500, 750, and 1000 rpm with a constant feed rate of 100 mm/min. The microstructures of the base alloy and the welded samples are studied using an optical microscope. The microhardness, tensile strengths, and corrosion fatigue strength of the welded joints are studied using standard samples and methods. The corrosion fatigue test is investigated in a 3.5% NaCl solution. Microstructural observations reveal large grain refinements after FSP, and the samples processed with the tool rotational speeds of 750 rpm show about 96% reduction in grain size compared to the HAZ region of the MIG welded joint mainly due to the plastic deformation at the nugget zone. The microhardness of the FSPed specimens is improved in comparison with the base metal, although no significant changes in tensile properties are obtained. The results also show that the maximum corrosion fatigue life is achieved for the specimen processed using the rotational speed of 750 rpm. SEM microstructure images of the fracture surface of the sample processed at the rotational speed of 750 rpm show that cracks, probably due to corrosion fatigue, initiate from the weld toe and propagate to the cross section of the sample.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. B.B. Wang, P. Xue, B.L. Xiao, W.G. Wang, Y.D. Liu and Z.Y. Ma, Achieving Equal Fatigue Strength to Base Material in a Friction Stir Welded 5083–H19 Aluminium Alloy Joint, Sci. Tech. Weld. Join., 2020, 25(1), p 81–88.

    Article  CAS  Google Scholar 

  2. P. Shahsavari and H.R. Rezaei Ashtiani, Effects of Preheating and Cooling Rate on the Microstructure and Mechanical Properties of Tungsten Inert Gas Welded Joints of Aa5083-H321 Aluminum Alloy, J. Materi. Eng. Perform., 2020, 29, p 6790–6801.

    Article  Google Scholar 

  3. N. Ullah Khan, S.K. Rajput, V. Gupta, V. Verma and T. Soota, To Study Mechanical Properties and Microstructures of MIG Welded High Strength Low Alloy Steel , Mater. Today. Proc., 2019, 18, p 2550–2555.

    Article  CAS  Google Scholar 

  4. P.M.G.P. Moreira, M.A.V. de Figueiredo and P.M.S.T. de Castro, Fatigue Behaviour of FSW and MIG Weldments for Two Aluminium Alloys, Theor. Appl. Fract. Mech., 2007, 48(2), p 169–177.

    Article  CAS  Google Scholar 

  5. G. Qin, Z. Ao, Y. Chen, C. Zhang and P. Geng, Formability Behavior Of Al/Steel MIG Arc Brazed-Fusion Welded Joint, J. Mater. Process. Technol., 2019, 273, p 116255.

    Article  Google Scholar 

  6. J. Vaara, A. Kunnari and T. Frondelius, Literature Review of Fatigue Assessment Methods in Residual Stressed State , Eng. Fail. Anal., 2020, 110, p 104379.

    Article  Google Scholar 

  7. K. Wei, M. Lv, X. Zeng, Z. Xiao, G. Huang, M. Liu and J. Deng, Effect of Laser Remelting on Deposition Quality, Residual Stress, Microstructure, and Mechanical Property of Selective Laser Melting Processed Ti-Al-Sn Alloy, Mater. Charact., 2019, 150, p 67–77.

    Article  CAS  Google Scholar 

  8. J.R. Hönnige, P. Colegrove and S. Williams, Improvement of Microstructure and Mechanical Properties in Wire + Arc Additively Manufactured Ti-6Al-4V With Machine Hammer Peening , Procedia. Eng., 2017, 216, p 8–17.

    Article  Google Scholar 

  9. R.K. Sharma, G.P. Singh Sodhi, V. Bhakar, R. Kaur, S. Pallakonda, P. Sarkar and H. Singh, Sustainability in Manufacturing Processes: Finding the Environmental Impacts of Friction Stir Processing of Pure Magnesium , CIRP J. Manuf. Sci. Tech., 2020, 30, p 25–35.

    Article  Google Scholar 

  10. S.R. Sharma, Z.Y. Ma and R.S. Mishra, Effect of Friction Stir Processing on Fatigue Behavior of A356 Alloy , Scr. Mater., 2004, 51(3), p 237–241.

    Article  CAS  Google Scholar 

  11. K. Kumar and S.V. Kailas, The Role of Friction Stir Welding Tool on Material Flow and Weld Formation, Mater. Sci. Eng. A, 2008, 485, p 367–374.

    Article  Google Scholar 

  12. M. Regev and S. Spigarelli, Microstructure, Thermal Stability During Creep and Fractography Study of Friction-Stir-Processed AA2024-T3 Aluminum Alloy, J. Materi. Eng. Perform., 2020, 29, p 4872–4878.

    Article  CAS  Google Scholar 

  13. M. Barati, M. Abbasi and M. Abedini, The effects of friction stir processing and friction stir vibration processing on mechanical, wear and corrosion characteristics of Al6061/SiO2 surface composite, J. Manuf. Process., 2019, 45, p 491–497.

    Article  Google Scholar 

  14. E.A. El-Danaf, M.M. El-Rayes and M.S. Soliman, Friction Stir Processing: An Effective Technique to Refine Grain Structure and Enhance Ductility, Mater. Des., 2010, 31(3), p 1231–1236.

    Article  CAS  Google Scholar 

  15. J.S. De Jesus, A. Loureiro, J.M. Costa and J.M. Ferreira, Effect of Tool Geometry on Friction Stir Processing and Fatigue Strength of MIG T Welds on Al Alloys, J. Mater. Process. Technol., 2014, 214(11), p 2450–2460.

    Article  Google Scholar 

  16. Y. Chen, H. Ding, J. Li, Z. Cai, J. Zhao and W. Yang, Influence of Multi-Pass Friction Stir Processing on the Microstructure and Mechanical Properties of Al-5083 Alloy, Mater. Sci. Eng. A., 2016, 650, p 281–289.

    Article  CAS  Google Scholar 

  17. K. Surekha, B.S. Murty and K. Prasad Rao, Effect of Processing Parameters on the Corrosion Behaviour of Friction Stir Processed AA2219 Aluminum Alloy , Solid. State. Sci., 2009, 11(4), p 907–917.

    Article  CAS  Google Scholar 

  18. R.M. Chlistovsky, P.J. Heffernan and D.L. DuQuesnay, Corrosion-Fatigue Behaviour of 7075–T651 Aluminum Alloy Subjected to Periodic Overloads, Int. J. Fatigue., 2007, 29(9), p 1941–1949.

    Article  CAS  Google Scholar 

  19. W.Y. Maeng, Y.H. Kang, T.W. Nam, S. Ohashi and T. Ishihara, Synergistic Interaction of Fatigue and Ftress Corrosion on The Corrosion Fatigue Crack Growth Behavior in Alloy 600 in High Temperature and High Pressure Water, J. Nucl. Mater., 1999, 275(2), p 194–200.

    Article  CAS  Google Scholar 

  20. S.I. Rokhlin, J.Y. Kim, H. Nagy and B. Zoofan, Effect of Pitting Corrosion on Fatigue Crack Initiation and Fatigue Life, Eng. Fract. Mech., 1999, 62(4), p 425–444.

    Article  Google Scholar 

  21. ASTM E3-11, Standard Guide for Preparation of Metallographic Specimens, ASTM International, West Conshohocken, PA, 2017.

  22. ASTM E466-15, Standard Practice for Conducting Force Controlled Constant Amplitude Axial Fatigue Tests of Metallic Materials, ASTM International, West Conshohocken, PA, 2015

  23. ASTM E384-17, Standard Test Method for Microindentation Hardness of Materials, ASTM International, West Conshohocken, PA, 2017.

  24. S. Zeng, G. Chen, I. Dinaharan, Q. Liu, S. Zhang, P. Kumar Sahu, J. Wu, G. Zhang and Q. Shi, Microstructure and Tensile Strength of AA6082 T-Joints By Corner Stationary Shoulder Friction Stir Welding: Effect of Tool Rotation Speed, J. Materi. Eng. Perform., 2020, 29, p 7094–7103.

    Article  Google Scholar 

  25. T.E. Borchers, A. Seid, S.S. Babu, P. Shafer and W. Zhang, Effect of Filler Metal and Post-Weld Friction Stir Processing on Stress Corrosion Cracking Susceptibility of Al–Zn–Mg Arc Welds, Sci. Tech. Weld. Join., 2015, 20(6), p 460–467.

    Article  CAS  Google Scholar 

  26. A.L. Pilchak, M.C. Juhas and J.C. Williams, Microstructural Changes Due to Friction Stir Processing of Investment-Cast Ti-6Al-4V , Metall. Mater. Trans. A., 2007, 38(2), p 401–408.

    Article  Google Scholar 

  27. C.B. Fuller and M.W. Mahoney, The Effect OF Friction Stir Processing On 5083–H321/5356 Al Arc Welds: Microstructural and Mechanical Analysis, Metall. Mater. Trans. A., 2006, 37(12), p 3605–3615.

    Article  Google Scholar 

  28. L.P. Borrego, J.D. Costa, J.S. Jesus, A.R. Loureiro and J.M. Ferreira, Fatigue Life Improvement by Friction Stir Processing of 5083 Aluminium Alloy MIG Butt Welds , Theor. Appl. Fract. Mech., 2014, 70, p 68–74.

    Article  CAS  Google Scholar 

  29. H. Zhao, Q. Pan, Q. Qin, Y. Wuc and X. Su, Effect of the Processing Parameters of Friction Stir Processing on the Microstructure and Mechanical Properties Of 6063 Aluminum Alloy , Mater. Sci. Eng. A., 2019, 751, p 70.

    Article  CAS  Google Scholar 

  30. S. Sharma, A. Handa, S. Sartaj Singh and D. Verma, Influence of Tool Rotation Speeds on Mechanical and Morphological Properties of Friction Stir Processed Nano Hybrid Composite of MWCNT-Graphene-AZ31 Magnesium, J Magnesium Alloy, 2019, 7(3), p 487–500.

    Article  CAS  Google Scholar 

  31. A.H. Ammouri, G. Kridli, G. Ayoub and R.F. Hamade, Relating Grain Size to the Zener-Hollomon Parameter for Twin-Roll-Cast Az31b Alloy Refined by Friction Stir Processing, J. Mater. Proc. Tech., 2015, 222, p 301–306.

    Article  CAS  Google Scholar 

  32. C.I. Chang, C.J. Lee and J.C. Huang, Relationship Between Grain Size and Zener-Holloman Parameter During Friction Stir Processing in AZ31 Mg Alloys, Scripta Mater., 2004, 51, p 509–514.

    Article  CAS  Google Scholar 

  33. X. Zhao, S. Li, Y. Xue and Z. Zhang, An Investigation on Microstructure, Texture and Mechanical Properties of AZ80 Mg alloy Processed by Annular Channel Angular Extrusion , Materials, 2019, 12(6), p 1001.

    Article  CAS  Google Scholar 

  34. Y.S. Sato, M. Urata, H. Kokawa and K. Ikeda, Hall-Petch Relationship in Friction Stir Welds of Equal Channel Angular-Pressed Aluminium Alloys, Mater. Sci. Eng. A., 2003, 354, p 298.

    Article  Google Scholar 

  35. K. Surekha, B.S. Murty and K.P. Rao, Microstructural Characterization and Corrosion Behavior of Multipass Friction Stir Processed AA2219 Aluminium Alloy, Surf. Coat. Technol., 2008, 202(17), p 4057–4068.

    Article  CAS  Google Scholar 

  36. R.V. Vignesh and R. Padmanaban, Intergranular Corrosion Susceptibility of Friction Stir Processed Aluminium Alloy 5083, Mater. Today: Proc., 2018, 5(8), p 16443–16452.

    CAS  Google Scholar 

  37. M.L. Santella, T. Engstrom, D. Storjohann and T.Y. Pan, Effects of Friction Stir Processing on Mechanical Properties of the Cast Aluminum Alloys A319 and A356, Scr. Mater., 2005, 53(2), p 201–206.

    Article  CAS  Google Scholar 

  38. J.S. Jesus, J.M. Costa, A. Loureiro and J.M. Ferreira, Fatigue Strength Improvement of GMAW T-Welds in AA 5083 by Friction-Stir Processing , Inter. J. Fatigue., 2017, 97, p 124–134.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thankfully acknowledge Shahid Rajaee Teacher Training University for providing the research facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hassan Jafari.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hadavi, M.R., Yarmohammad Touski, H., Jafari, H. et al. Effect of Friction Stir Processing on Microstructure, Mechanical Properties, and Corrosion Fatigue Behavior of AA5083-H111 Metal Inert Gas Welded Joint. J. of Materi Eng and Perform 30, 5763–5772 (2021). https://doi.org/10.1007/s11665-021-05783-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-021-05783-4

Keywords

Navigation