Skip to main content
Log in

Effect of Laser Pulse Duration on Tensile and Electrochemical Behavior of Laser-Welded Dual-Phase Steel

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

Dual-phase steels having excellent combination of strength and ductility are extensively used in automotive industry for the manufacture of car body structure involving welding and joining significantly. The present study assesses the tensile and electrochemical behavior of butt welded dual-phase 780 steel grade produced using pulsed Nd:YAG laser with varying pulse duration in the range of 1.5 to 3.6 ms. Numerical modeling has been done to know the temperature profile during welding. Systematic analysis of welded joint bead profile, microstructure, tensile test results, and fractographic features revealed the effect of pulse duration on the fusion zone, heat-affected zone softening, and also allowed the estimation of critical size of the soft zone near to the failure location under tensile loading. With an increase in pulse duration, welded joint concavity reduced from 35 to 6% which improved the mechanical performance of the welded joints. Welded joints with higher pulse duration enhanced the resistance against galvanic and pitting corrosion due to the formation of the oxide layer, finer martensitic microstructure in the fusion zone and a smaller amount of weld defects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. A. Chakraborty, M. Adhikary, T. Venugopalan, V. Singh, T. Nanda and B. Ravi Kumar, Effect of Ferrite-Martensite Interface Morphology on Bake Hardening Response of DP590 Steel, Mater. Sci. Eng. A, 2016, 676, p 463–473.

    CAS  Google Scholar 

  2. A. Kundu and D.P. Field, Influence of Plastic Deformation Heterogeneity on Development of Geometrically Necessary Dislocation Density in Dual Phase Steel, Mater. Sci. Eng. A, 2016, 667, p 435–443.

    CAS  Google Scholar 

  3. X. Wang, Q. Sun, Z. Zheng and H. Di, Microstructure and Fracture Behaviour of Laser Welded Joints of DP Steels with Different Heat Inputs, Mater. Sci. Eng. A, 2017, 699, p 18–25.

    CAS  Google Scholar 

  4. J. Wang, L. Yang, M. Sun, T. Liu and H. Li, Effect of Energy Input on the Microstructure and Properties of Butt Joints in DP1000 Steel Laser Welding, Mater. Des., 2016, 90, p 642–649.

    CAS  Google Scholar 

  5. Q. Sun, H. Di, J. Li and X. Wang, Effect of Pulse Frequency on Microstructure and Properties of Welded Joints for Dual Phase Steel by Pulsed Laser Welding, Mater. Des, 2016, 105, p 201–211.

    CAS  Google Scholar 

  6. S. Sadagopan, B. Yan, and M. Huang, Characterization of Press Formability of Advanced High Strength Steels using Laboratory Tests, SAE 2004-01-0506 (2004).

  7. N. Fonstein, Dual-phase steels, Automotive Steels Design, Metallurgy, Processing and Applications, R. Rana, and S. B. Singh, Ed., Automotive Steels, Woodhead Publishing, 2017, p 169–216.

  8. K. Olsson, M. Gladh, J.E. Hedin and J. Larsson, Microalloyed High-Strength Steels, Adv. High-Strength Steels, 2006, 8, p 4446.

    Google Scholar 

  9. N. Farabi, D.L. Chen, J. Li, Y. Zhou and S.J. Dong, Microstructure and Mechanical Properties of Laser Welded DP600 Steel Joints, Mater. Sci. Eng. A, 2010, 527, p 1215–1222.

    Google Scholar 

  10. K. Pańcikiewicz, A. Świerczyńska, P. Hućko and M. Tumidajewicz, Laser Dissimilar Welding of AISI 430F and AISI 304 Stainless Steels, Materials, 2020, 13, p 4540. https://doi.org/10.3390/ma13204540

    Article  CAS  Google Scholar 

  11. A.M. Chelladurai, K.A. Gopal, S. Murugan, S. Venugopal and T. Jaykumar, Energy Transfer Modes in Pulsed Laser Seam Welding, Mater. Manuf. Process., 2015, 30, p 162–168.

    CAS  Google Scholar 

  12. F. Malek Ghaini, M.J. Hamedi, M.J. Torkamany and J. Sabbaghzadeh, Weld Metal Microstructural Characteristic in Pulsed Nd:YAG Laser Welding, Scr. Mater., 2007, 56, p 955–958.

    CAS  Google Scholar 

  13. E. Assuncao and S. Williams, Comparison of Continuous Wave and Pulsed Wave Laser Welding Effects, Opt. Laser. Eng., 2013, 51, p 674–680.

    Google Scholar 

  14. Z. Jia, P. Zhang, Z. Yu, H. Shi, H. Liu, D. Wu, X. Ye, F. Wang and Y. Tian, Effect of Pulse Shaping on Solidification Process and Crack in 5083 Aluminum Alloy by Pulsed Laser Welding, Opt. Laser Technol., 2021, 134, p 106608.

    CAS  Google Scholar 

  15. M. Shamanian, M. Valehi, J. Kangazian and J.A. Szpunar, EBSD Characterization of the L-605 Co-based Alloy Welds Processed by Pulsed Nd:YAG Laser Welding, Opt. Laser Technol, 2020, 128, p 106256.

    CAS  Google Scholar 

  16. X. Xue, X. Wu and J. Liao, Hot-Cracking Susceptibility and Shear Fracture Behavior of Dissimilar Ti6Al4V/AA6060 Alloys in Pulsed Nd:YAG Laser Welding, Chinese J. Aeronaut., 2021 https://doi.org/10.1016/j.cja.2020.12.015

    Article  Google Scholar 

  17. V.E. Gromov, S.V. Gorbunov and Y.F. Ivanov, Formation of Surface Gradient Structural-Phase States Under Electron-Beam Treatment of Stainless Steel, J. Synch. Investig., 2011, 5, p 974–978.

    CAS  Google Scholar 

  18. C. Zhang, P. Lv, H. Xia, Z. Yang, S. Konovalov, X. Chen and Q. Guan, The Microstructure and Properties of Nanostructured Cr-Al Alloying Layer Fabricated by High-Current Pulsed Electron Beam, Vacuum, 2019, 167, p 263–270.

    CAS  Google Scholar 

  19. S. Valkov, M. Ormanova and P. Petrov, Electron-Beam Surface Treatment of Metals and Alloys: Techniques and Trends, Metals, 2020, 10, p 1219.

    CAS  Google Scholar 

  20. N. Farabi, D. Chen and Y. Zhou, Microsstructure and Mechanical Properties of Laser Welded Dissimilar DP600/DP980 Dual-Phase Steel Joints, J. Alloys Compd., 2011, 509, p 982–989.

    CAS  Google Scholar 

  21. M. Xia, E. Biro, Z. Tian and Y. Zhou, Effects of Heat Input and Martensite on HAZ Softening in Laser Welding of Dual Phase Steel, ISIJ Int., 2008, 48, p 809–814.

    CAS  Google Scholar 

  22. M.S. Slobodyan, V.N. Kudiiarov and A.M. Lider, Effect of Energy Parameters of Pulsed Laser Welding of Zr-1%Nb Alloy on Metal Contamination with Gases and Properties of Welds, J. Manuf. Process, 2019, 45, p 472–490.

    Google Scholar 

  23. Y. Liao and M. Yu, Effects of Laser Beam Energy and Incident Angle on the Pulse Laser Welding of Stainless Steel Thin Sheet, J. Mater. Process. Technol., 2007, 190, p 102–108.

    CAS  Google Scholar 

  24. S.H. Baghjari and S.A.A. Akbari Mousavi, Effects of Pulsed Nd:YAG Laser Welding Parameters and Subsequent Post-weld Heat Treatment on Microstructure and Hardness of AISI 420 Stainless Steel, Mater. Des., 2013, 43, p 1–9.

    CAS  Google Scholar 

  25. M.P. Gracia, G.L. Mantovani and R. Kumar, Corrosion Behaviour of Metal Active Gas Welded Joints of a High-Strength Steel for Automotive Application, J. Mater. Eng. Perform., 2017, 26, p 4718–4731.

    Google Scholar 

  26. N. Wint, J. Leung, J. Sullivan, D. Penney and Y. Gao, The Galvanic Corrosion of Welded Ultra-High Strength Steels used for Automotive Applications, Corros. Sci., 2018, 136, p 366–373.

    CAS  Google Scholar 

  27. Y. Tzeng, Effects of Process Parameters on the Corrosion Rate of Pulsed Nd:YAG Laser-Welded Zinc-Coated Steel, J. Mater. Process. Technol., 2002, 124, p 1–7.

    CAS  Google Scholar 

  28. Y.F. Tzeng, Pulsed Nd:YAG Laser Seam Welding of Zinc-Coated Steel, Weld. J., 1999, 78(7), p 238s–244s.

    Google Scholar 

  29. T. Yih-fong, Gap-Free Lap Welding of Zinc-Coated Steel Using Pulsed CO2 Laser, Int. J. Adv. Manuf. Technol., 2006, 29, p 287–295.

    Google Scholar 

  30. X. Zhang and Z. Cao, Effects of Pulse Shaping on Nd:YAG Laser Spot Welds in an AZ31 Magnesium Alloy, Opt. Lasers Eng., 2019, 119, p 1–8.

    Google Scholar 

  31. A. Klimpel and A. Lisiecki, Laser Welding of Butt Joints of Austenitic Stainless Steel AISI 321, J. Achiev. Mater. Manuf. Eng., 2007, 25, p 63–66.

    Google Scholar 

  32. H. Sebestova, M. Havelkova and H. Chmelickova, Energy Losses Estimation During Pulsed-Laser Seam Welding, Metall. Mater. Trans. B, 2014, 45, p 1116–1121.

    CAS  Google Scholar 

  33. T. Kik, Heat Source Models in Numerical Simulations of Laser Welding, Materials, 2020, 13, p 2653. https://doi.org/10.3390/ma13112653

    Article  CAS  Google Scholar 

  34. K.C. Mills, Fe-C Ductile Iron, Recommended Values of ThermoPhysical Properties of Selected Commercial Alloys, 1st ed. Woodhead Publishing Limited, Cambridge, 2002, p 119–124

    Google Scholar 

  35. M. Baruah and S. Bag, Influence of Pulsation in Thermo-Mechanical Analysis on Laser Micro-Welding of Ti6Al4V alloy, Opt. Laser Technol., 2017, 90, p 40–51.

    CAS  Google Scholar 

  36. M.R. Pakmanesh and M. Shamanian, Optimization of Pulsed Laser Welding process Parameters in Order to Attain Minimum Underfilling and Undercut Defects in Thin 316L Stainless Steel Foils, Opt. Laser. Technol., 2018, 99, p 30–38.

    CAS  Google Scholar 

  37. D.C. Saha, D. Westerbaan, S.S. Nayak, E. Biro, A.P. Gerlich and Y. Zhou, Microstructure Properties Correlation in Fiber Laser Welding of Dual Phase Steel and HSLA Steels, Mater. Sci. Eng. A, 2014, 607, p 445–453.

    CAS  Google Scholar 

  38. J. Kundu, T. Ray, A. Kundu and M. Shome, Effect of the Laser Power on the Mechanical Performance of the Laser Spot Welds in Dual Phase Steels, J. Mater. Process. Technol, 2019, 267, p 114–123.

    CAS  Google Scholar 

  39. K. Kunishige, N. Yamauchi, T. Taka, and N. Nagao, Softening in Weld Heat Affectedd Zone of Dual Phase Steel Sheet for Automotive Wheel Rim, SAE Tech. Pap., 830632, 1983, https://doi.org/10.4271/830632.

  40. H. Bhadeshia and R. Honeycombe, Tempering of Martensite Steels: Microstructure and Properties, 4th ed. Elsevier Science and Technology Books, 2006, p 237–270

    Google Scholar 

  41. V.H. Baltazar Hernandez, S.K. Panda, M.L. Kuntz and Y. Zhou, Nanoindentation and Microstructure Analysis of Resistance Spot Welded Dual Phase Steel, Mater. Lett., 2010, 64, p 207–210.

    CAS  Google Scholar 

  42. D. Westerbaan, D. Parkes, D. Chen, E. Biro, F. Goodwin, Y. Zhou and S.S. Nayak, Effects of Concavity on Tensile and Fatigue Properties in Fiber Laser Welding of Automotive Steels, Sci. Technol. Weld. Join., 2014, 19, p 60–68.

    CAS  Google Scholar 

  43. Y. Kawahito, M. Mizutani and S. Ktayama, Elucidation of High Power Fiber Laser Welding Phenomenon of Stainless Steel and Effect of Factors on Weld Geometery, J. Phys. D Apply. Phys., 2007, 40, p 5854–5859.

    CAS  Google Scholar 

  44. C. Xie, S. Yang, H. Liu, Q. Zhang, Y. Cao and Y. Wang, Microstructure and Fatigue Properties of Laser Welded DP 590 Dual-Phase Steel Joints, J. Mater. Eng. Perform., 2017, 26, p 3794–3801.

    CAS  Google Scholar 

  45. W. Xu, D. Westerbaan, S.S. Nayak, D.L. Chen, F. Goodwin, E. Biro and Y. Zhou, Microstructure and fatigue Properties of Single and Multiple Linear Fiber Laser Welded DP 980 Dual-Phase Steel, Mater. Sci. Eng. A, 2012, 553, p 51–58.

    CAS  Google Scholar 

  46. D. Parkes, W. Xu, D. Westerbaan, S.S. Nayak, Y. Zhou, F. Goodwin, S. Bhole and D.L. Chen, Microstructure and Fatigue Properties of Fiber Laser Welded Dissimilar Joints Between High Strength Low Alloy Steel and Dual-Phase Steels, Mater. Des., 2013, 51, p 665–675.

    CAS  Google Scholar 

  47. W. Xu, D. Westerbaan, S.S. Nayak, D.L. Chen, F. Goodwin and Y. Zhou, Tensile and Fatigue Properties of Fiber Laser Welded High Strength Low Alloy Steel and DP 980 Dual-Phase Steel Joints, Mater. Des., 2013, 43, p 373–383.

    CAS  Google Scholar 

  48. Q. Jia, W. Guo, P. Peng, M. Li, Y. Zhu and G. Zou, Microstructure- and Strain Rate-Dependent Tensile Behaviour of Fiber Laser-Welded DP 980 Steel Joint, J. Mater. Eng. Perform., 2016, 25, p 668–676.

    CAS  Google Scholar 

  49. E. Salamci, S. Candan and F. Kabakci, Effect of Microstruture on Corrosion Behaviour of Dual-Phase Steels, Kovove Mater., 2017, 55, p 133–139.

    CAS  Google Scholar 

  50. Y. Kayali and B. Anaturk, Inverstigation of Electrochemical Corrosion Behaviour in a 3.5% wt NaCl Solution of Boronized Dual-Phase Steel, Mater. Des., 2013, 46, p 776–783.

    CAS  Google Scholar 

  51. L. Huang, K. Wang and W. Wang, Mechanical and Corrosion Properties of Low-Carbon Steel Prepared by Friction Stir Processing, Int. J. Miner. Metall. Mater., 2019, 26, p 202–209.

    CAS  Google Scholar 

  52. G.A. Zhang and Y.F. Cheng, Micro-Electrochemical Charatcerization of Corrosion of Welded X 70 Pipeline Steel in Near Neutral pH Solution, Corros. Sci., 2009, 51, p 1714–1724.

    CAS  Google Scholar 

  53. O. Abedini, M. Behroozi, P. Marashi, E. Ranjbarnodeh and M. Pouranvari, Intercritical Heat Treatment Temperature Dependance of Mechanical Properties and Corrosion Resistance of Dual Phase Steel, Mater. Res., 2019 https://doi.org/10.1590/1980-5373-mr-2017-0969

    Article  Google Scholar 

  54. H. Li, C. Dong and K. Xiao, Relationship Between Microstructure and Corrosion Behaviour of Cr12Ni3Co12Mo4W Ultra-High-Strength Martensitic Steel, Acta. Metall. Sin. (Engl. Lett.), 2016, 29, p 1064–1072.

    CAS  Google Scholar 

  55. S. Weng, Y.H. Huang, F.Z. Xuan and L.H. Luo, Correlation Between Microstructure and Corrosion of Welded Joints of Disc Rotors, Procedia Eng., 2015, 130, p 1761–1769.

    Google Scholar 

Download references

Acknowledgments

Amrita Kundu gratefully acknowledges the financial support for the project from University Grants Commission, Government of India, under “Start-up-Grant (No.:F.30-103/2015(BSR))”. The authors thank Tata Steel Ltd., India, for the provision of a test material and Centre of Excellence in Phase Transformation and Product Characterisation, Jadavpur University, Kolkata-700032, India, for microhardness facility. Amit Sarkar acknowledges Centre of Excellence in Phase Transformation and Product Characterisation, Jadavpur University, Kolkata-700032, India, for providing fellowship to carry out the present investigation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akash Gandhi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gandhi, A., Kundu, A., Sarkar, A. et al. Effect of Laser Pulse Duration on Tensile and Electrochemical Behavior of Laser-Welded Dual-Phase Steel. J. of Materi Eng and Perform 30, 4263–4281 (2021). https://doi.org/10.1007/s11665-021-05715-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-021-05715-2

Keywords

Navigation