Skip to main content
Log in

Low Cycle Fatigue Behavior and Failure Mechanism of Wire Arc Additive Manufacturing 16MND5 Bainitic Steel

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

In this study, the low cycle fatigue behavior and failure mechanism of WAAM 16MND5 bainitic steel, which is commonly used in the nuclear reactor, were investigated thoroughly via a series of strain-controlled and stress-controlled low cycle fatigue tests. Results show that the microstructure of WAAM 16MND5 steel is granular bainite with a certain number of banded pro-eutectoid ferrite. WAAM 16MND5 steel exhibits similar cyclic deformation behavior under different strain amplitudes, i.e., a long stage of continuous cyclic softening and rapid cyclic softening till failure. The fatigue life decreases with the increasing strain amplitude. Moreover, the persistent slip markings in ferrite grains, the interface of pro-eutectoid ferrite and large Al2O3 inclusions are the preferred locations for microcrack initiation. The crack initiated from the edge of the specimen is observed to develop into a main crack. The main crack propagates mainly in transgranular mode and can also propagate along the pro-eutectoid ferrite interface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. C.Y. Lu, Y.M. He, Z.L. Gao, J.G. Yang, W.Y. Jin and Z.G. Xie, Microstructural Evolution and Mechanical Characterization for the A508-3 Steel Before and after Phase Transition, J. Nucl. Mater., 2017, 495, p 103–110

    Article  CAS  Google Scholar 

  2. X.L. Yuan, J. Zuo, R.J. Ma and Y.T. Wang, How Would Social Acceptance Affect Nuclear Power Development? A Study from China, J. Clean. Prod., 2017, 163, p 179–186

    Article  Google Scholar 

  3. H. Fayazfar, M. Salarian, A. Rogalsky, D. Sarker, P. Russo, V. Paserin and E. Toyserkani, A Critical Review of Powder-Based Additive Manufacturing of Ferrous Alloys: Process Parameters, Microstructure and Mechanical Properties, Mater. Des., 2018, 144, p 98–128

    Article  CAS  Google Scholar 

  4. A. Yadollahi and N. Shamsaei, Additive Manufacturing of Fatigue Resistant Materials: Challenges and Opportunities, Int. J. Fatigue, 2017, 98, p 14–31

    Article  Google Scholar 

  5. G.A. Qian, Z.M. Jian, X.N. Pan and F. Berto, In-Situ Investigation on Fatigue Behaviors of Ti-6Al-4V Manufactured by Selective Laser Melting, Int. J. Fatigue, 2020, 133, p 105424

    Article  CAS  Google Scholar 

  6. A. Caballero, J.L. Ding, S. Ganguly and S. Williams, Wire Plus Arc Additive Manufacture of 17-4 PH Stainless Steel: Effect of Different Processing Conditions on Microstructure, Hardness, and Tensile Strength, J. Mater. Process. Technol., 2019, 268, p 54–62

    Article  CAS  Google Scholar 

  7. X. Chen, B. Ren, D.J. Yu, B. Xu, Z. Zhang and G. Chen, Uniaxial Low Cycle Fatigue Behavior for Pre-corroded 16MND5 Bainitic Steel in Simulated Pressurized Water Reactor Environment, J. Nucl. Mater., 2018, 504, p 267–276

    Article  CAS  Google Scholar 

  8. X.Y. Yuan, W.W. Yu, S.C. Fu, D.J. Yu and X. Chen, Effect of Mean Stress and Ratcheting Strain on the Low Cycle Fatigue Behavior of a Wrought 316LN Stainless Steel, Mater. Sci. Eng. A, 2016, 677, p 193–202

    Article  CAS  Google Scholar 

  9. Y. Lin, W. Yang, Z.F. Tong, C.Y. Zhang and G.S. Ning, Charpy Impact Test on A508-3 Steel After Neutron Irradiation, Eng. Fail. Anal., 2017, 82, p 733–740

    Article  CAS  Google Scholar 

  10. B. Tanguy, J. Besson, R. Piques and A. Pineau, Ductile to Brittle Transition of an A508 Steel Characterized by Charpy Impact Test: Part II: Modeling of the Charpy Transition Curve, Eng. Fract. Mech., 2005, 72, p 413–434

    Article  Google Scholar 

  11. J. Lei, H. Ding, G.G. Shu and Q.M. Wan, Study on the Mechanical Properties Evolution of A508–3 Steel under Proton Irradiation, Nucl. Instrum. Methods Phys. Res. Sect. B, 2014, 338, p 13–18

    Article  CAS  Google Scholar 

  12. X.H. Li, J. Lei, G.G. Shu and Q.M. Wan, A Study on the Microstructure and Mechanical Property of Proton Irradiated A508-3 Steel, Nucl. Instrum. Methods Phys. Res Sect. B, 2015, 350, p 14–19

    Article  CAS  Google Scholar 

  13. J.J. Shi, W.Z. Zhao, Y.C. Wu, X.B. Liu and J. Jiang, Characterization of Proton-Irradiated Chinese A508-3-Type Reactor Pressure Vessel Steel by Slow Positron Beam, TEM, and Nanoindentation, Nucl. Instrum. Methods Phys. Res. Sect. B, 2019, 443, p 62–69

    Article  CAS  Google Scholar 

  14. H.S. Kim, J. Shin, B.S. Kong, S. Hong, S. Oh, J.D. Hong, C. Jang and S. Lee, Effects of Heat Treatment on Mechanical Properties and Sensitization Behavior of Materials in Dissimilar Metal Weld, Int. J. Press. Vessels Pip., 2019, 172, p 17–27

    Article  Google Scholar 

  15. J.Y. Huang, T.Y. Yung, J.S. Huang and R.C. Kuo, Effects of Heat Treatment and Chromium Content on the Environmentally Assisted Cracking Behavior of the Dissimilar Metal Welds in Simulated BWR Coolant Environments, Corros. Sci., 2013, 75, p 386–399

    Article  CAS  Google Scholar 

  16. C.Y. Lu, Y.M. He, J.G. Yang, W.J. Zheng, Z.G. Xie and Z.L. Gao, An Investigation of Phase Transition on the Microstructural Characteristic and Creep Behavior for the SA508 Gr.3 Steel Used for Nuclear Reactor Pressure Vessels, Mater. Sci. Eng. A, 2018, 711, p 659–669

    Article  CAS  Google Scholar 

  17. W. Zhong, Z. Tong, G. Ning, C. Zhang, H. Lin and W. Yang, The Fatigue Behavior of Irradiated Reactor Pressure Vessel Steel, Eng. Fail. Anal., 2017, 82, p 840–847

    Article  CAS  Google Scholar 

  18. H. Jang, J.H. Kim, C. Jang, J.G. Lee and T.S. Kim, Low-Cycle Fatigue Behaviors of Two Heats of SA508 Gr.1a Low Alloy Steel in 310 °C Air and Deoxygenated Water-Effects of Dynamic Strain Aging and Microstructures, Mater. Sci. Eng. A, 2013, 580, p 41–50

    Article  CAS  Google Scholar 

  19. X. Dai, T. Peng, Y.F. Chen, X.D. Chen and B. Yang, The Correlation Between Martensite-Austenite Islands Evolution and Fatigue Behavior of SA508-IV Steel, Int. J. Fatigue, 2020, 139, p 105776

    Article  CAS  Google Scholar 

  20. R. Singh, V. Singh, A. Arora and D.K. Mahajan, In-Situ Investigations of Hydrogen Influenced Crack Initiation and Propagation under Tensile and Low Cycle Fatigue Loadings in RPV Steel, J. Nucl. Mater., 2020, 529, p 151912

    Article  CAS  Google Scholar 

  21. R. Singh, A. Singh, P.K. Singh and D.K. Mahajan, Effect of Microstructural Features on Short Fatigue Crack Growth Behaviour in SA508 Grade 3 Class I Low Alloy Steel, Int. J. Press. Vessels Pip., 2020, 185, p 104136

    Article  CAS  Google Scholar 

  22. Y.B. Shang, H.J. Shi, Z.X. Wang and G.D. Zhang, In-Situ SEM Study of Short Fatigue Crack Propagation Behavior in a Dissimilar Metal Welded Joint of Nuclear Power Plant, Mater. Des., 2015, 88, p 598–609

    Article  CAS  Google Scholar 

  23. Z. Liu, X. Wang, R.E. Miller, J.Q. Hu and X. Chen, Ductile Fracture Properties of 16MND5 Bainitic Forging Steel under Different In-Plane and Out-of-Plane Constraint Conditions: Experiments and Predictions, Eng. Fract. Mech., 2021, 241, p 107359

    Article  Google Scholar 

  24. J. Kang, C. Wang and G.D. Wang, Microstructural Characteristics and Impact Fracture Behavior of a High-Strength Low-Alloy Steel Treated by Intercritical Heat Treatment, Mater. Sci. Eng. A, 2012, 553, p 96–104

    Article  CAS  Google Scholar 

  25. Z. Xiao, Y.J. Huang, C.X. Chen, Z. Li, S. Gong, Y.X. Huang, C. Zhang and X.X. Zhang, Effects of Thermal Treatments on the Residual Stress and Micro-yield Strength of Al2O3 Dispersion Strengthened Copper Alloy, J. Alloys Compd., 2019, 781, p 490–495

    Article  CAS  Google Scholar 

  26. Y.H. Huang, J.M. Kang, Y. Peng, T.S. Wang, N. Hansen and X. Huang, Hall-Petch Strengthening in Fe-34.5Mn-0.04C Steel Cold-Rolled, Partiallyrecrystallized and Fully Recrystallized, Scr. Mater., 2018, 155, p 41–45

    Article  Google Scholar 

  27. S.K. Paul, S. Sivaprasad, S. Dhar and S. Tarafder, Cyclic Plastic Deformation and Cyclic Hardening/Softening Behavior in 304LN Stainless Steel, Theor. Appl. Fract. Mech., 2010, 54, p 63–70

    Article  CAS  Google Scholar 

  28. X.Y. Cao, P. Zhu, Q. Yong, T.G. Liu, Y.H. Lu, J.C. Zhao, Y. Jiang and T. Shoji, An Investigation on High Temperature Fatigue Properties of Tempered Nuclear-Grade Deposited Weld Metals, J. Nucl. Mater., 2018, 499, p 317–325

    Article  CAS  Google Scholar 

  29. Q. Zhou, L.H. Qian, J.Y. Meng, L.J. Zhao and F.C. Zhang, Low-Cycle Fatigue Behavior and Microstructural Evolution in a Low-Carbon Carbide-Free Bainitic Steel, Mater. Des., 2015, 85, p 487–496

    Article  CAS  Google Scholar 

  30. R.S. Xing, D.J. Yu, G.F. Xie, Z.H. Yang, X.X. Wang and X. Chen, Effect of Thermal Aging on Mechanical Properties of a Bainitic Forging Steel for Reactor Pressure Vessel, Mater. Sci. Eng. A, 2018, 720, p 169–175

    Article  CAS  Google Scholar 

  31. L. Carneiro, B. Jalalahmadi, A. Ashtekar and Y.Y. Jiang, Cyclic Deformation and Fatigue Behavior of Additively Manufactured 17-4 PH Stainless Steel, Int. J. Fatigue, 2019, 123, p 22–30

    Article  CAS  Google Scholar 

  32. K. Yang, Q. Huang, Q.Y. Wang and Q. Chen, Competing Crack Initiation Behaviors of a Laser Additively Manufactured Nickel-Based Superalloy in High and Very High Cycle Fatigue Regimes, Int. J. Fatigue, 2020, 136, p 105580

    Article  CAS  Google Scholar 

  33. P. Kumar, R. Jayaraj, J. Suryawanshi, U.R. Satwik, J. Mckinnell and U. Ramamurty, Fatigue Strength of Additively Manufactured 316L Austenitic Stainless Steel, Acta Mater., 2020, 199, p 225–239

    Article  CAS  Google Scholar 

  34. M.S. Song, Y.Y. Kong, M.W. Ran and Y.C. She, Cyclic Stress–Strain Behavior and Low Cycle Fatigue Life of Cast A356 Alloys, Int. J. Fatigue, 2011, 33, p 1600–1607

    Article  CAS  Google Scholar 

  35. B.B. Li, Y.M. Zheng, S.W. Shi, Z. Zhang and X. Chen, Cyclic Deformation Behavior and Failure Mechanism of S32205 Duplex Stainless Steel under Torsional Fatigue Loadings, Mater. Sci. Eng. A, 2020, 786, p 139443

    Article  CAS  Google Scholar 

  36. C.H. Song, H.L. Wang, Z.Z. Sun, Z.Y. Wei, H. Yu, H.B. Chen, Y.L. Wang and J. Lu, Effect of Multiphase Microstructure on Fatigue Crack Propagation Behavior in TRIP-Assisted Steels, Int. J. Fatigue, 2020, 133, p 105425

    Article  CAS  Google Scholar 

  37. X. Cui, S. Zhang, C. Wang, C.H. Zhang, J. Chen and J.B. Zhang, Microstructure and Fatigue Behavior of a Laser Additive Manufactured 12CrNi2 Low Alloy Steel, Mater. Sci. Eng. A, 2020, 772, p 138685

    Article  CAS  Google Scholar 

  38. S.K. Paul, Correlation Between Endurance Limit and Cyclic Yield Stress Determined from Low Cycle Fatigue Test, Materialia, 2020, 11, p 100695

    Article  Google Scholar 

  39. D.Y. Hu, T. Wang, Q.H. Ma, X. Liu, L.H. Shang, D. Li, J.C. Pan and R.Q. Wang, Effect of Inclusions on Low Cycle Fatigue Lifetime in a Powder Metallurgy Nickel-Based Superalloy FGH96, Int. J. Fatigue, 2019, 118, p 237–248

    Article  CAS  Google Scholar 

  40. A. de Pannemaecker, J.Y. Buffiere, S. Fouvry and O. Graton, In Situ Fretting Fatigue Crack Propagation Analysis Using Synchrotron X-ray Radiography, Int. J. Fatigue, 2017, 97, p 56–69

    Article  Google Scholar 

  41. M.C. Marinelli, M. Balbi and U. Krupp, Influence of Plastic Deformation in Fatigue Crack Behavior in Bainitic Steel, Int. J. Fatigue, 2021, 143, p 106014

    Article  CAS  Google Scholar 

  42. M.F. Guan and H. Yu, Fatigue Crack Growth Behaviors in Hot-Rolled Low Carbon Steels: A Comparison Between Ferrite-Pearlite and Ferrite-Bainite Microstructures, Mater. Sci. Eng. A, 2013, 559, p 875–881

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge financial support for this work from Science and Technology on Reactor System Design Technology Laboratory (HT-KFKT-14-2018003).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xu Chen.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This invited article is part of a special topical focus in the Journal of Materials Engineering and Performance on Additive Manufacturing. The issue was organized by Dr. William Frazier, Pilgrim Consulting, LLC; Mr. Rick Russell, NASA; Dr. Yan Lu, NIST; Dr. Brandon D. Ribic, America Makes; and Caroline Vail, NSWC Carderock.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mu, S., Li, Y., Song, D. et al. Low Cycle Fatigue Behavior and Failure Mechanism of Wire Arc Additive Manufacturing 16MND5 Bainitic Steel. J. of Materi Eng and Perform 30, 4911–4924 (2021). https://doi.org/10.1007/s11665-021-05554-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-021-05554-1

Keywords

Navigation