Skip to main content
Log in

Fabrication, Characterization, and Corrosion Behavior of a New Cu40Mn25Al20Fe5Co5Ni5 High-Entropy Alloy in HNO3 Solution

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

High entropy alloys (HEAs) have a wide spectrum of applications. Many researches investigate Fe-rich high entropy alloy (HEA). However, few authors deal with Cu-rich HEA. Therefore, this research discusses a novel non-equiatomic Cu40Mn25Al20Fe5Co5Ni5 HEA with a superior corrosion resistance, which is made by liquid metallurgy route. The alloy was prepared via casting in an electric resistance furnace under protective atmosphere. The as-cast alloy microstructure was experimentally characterized by optical microscopy, scanning electron microscopy (SEM), energy-dispersive spectroscopy (EDS), mapping of the elemental distribution, and x-ray diffraction (XRD). The corrosion behavior of Cu40Mn25Al20Fe5Co5Ni5 HEA was investigated using the weight-loss method and potentiodynamic polarization tests. The corrosion properties of the alloy were studied in different concentrations of 0.5, 1, 5 and 10% HNO3 acid solutions. The corroded Cu40Mn25Al20Fe5Co5Ni5 HEA samples were examined by SEM, EDS, and mapping of elements distribution. The results were concluded that the novel Cu40Mn25Al20Fe5Co5Ni5 HEA exhibits good corrosion performance when immersed in different concentrations of 0.5, 1, 5 and 10% nitric acid. Finally, alloy item selection and process parameter control are new research topics that hold the promise of future HEAs study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. I. Florea, G. Buluc, R.M. Florea, V. Soare, and I. Carcea, Study on Corrosion Resistance of High – Entropy Alloy in Medium Acid Liquid and Chemical Properties, IOP Conf. Series: Mater. Sci. Eng., 2015, 95, p 012013

    Article  Google Scholar 

  2. E.P. George, D. Raabe, and R.O. Ritchie, High-Entropy Alloys, Nat. Rev. Mater., 2019, 4(8), p 515–534

    Article  CAS  Google Scholar 

  3. W. Cui, X. Zhang, F. Liou, Additive manufacturing of high-entropy alloys–a review. in Solid Freeform Fabrication 2017: Proceedings of the 28th Annual International (2017)

  4. S. Kumar, S. Kumar, V. Singh, J. Kumar, High-Entropy alloys, A Review. Inter. Res. J. Eng. Technol. (IRJET), 2016, 3(9) p 1563–1566

    Google Scholar 

  5. V. Kukshal, A. Patnaik, and I.K. Bhat, Effect of Mn on Corrosion and Thermal Behaviour of AlCr1.5CuFeNi2Mnx High-Entropy Alloys, IOP Conf. Series: Mater. Sci. Eng, 2018, 377, p 012023

    Article  Google Scholar 

  6. J. Li, Y. Huang, X. Meng, and Y. Xie, A Review on High Entropy Alloys Coatings: Fabrication Processes and Property Assessment, Adv. Eng. Mater., 2019, 21, p 1900343

    Article  CAS  Google Scholar 

  7. Y. Zhang, T.T. Zuo, Z. Tang, M.C. Gao, K.A. Dahmen, P.K. Liaw, and Z.P. Lu, Microstructures and Properties of High-Entropy Alloys, Prog. Mater Sci., 2014, 61, p 1–93

    Article  CAS  Google Scholar 

  8. J.W. Yeh, S.K. Chen, S.J. Lin, J.Y. Gan, T.S. Chin, T.T. Shun, C.H. Tsau, and S.Y. Chang, Nanostructured High-Entropy Alloys with Multiple Principal Elements: Novel Alloy Design Concepts and Outcomes, Adv. Eng. Mater., 2014, 6(5), p 299

    Article  CAS  Google Scholar 

  9. J.B. Cheng, X.B. Liang, and B.S. Xu, Effect of Nb Addition on the Structure and Mechanical Behaviors of CoCrCuFeNi High-Entropy Alloy Coatings, Surf. Coat. Technol., 2014, 240, p 184

    Article  CAS  Google Scholar 

  10. M.C. Gao and J. Qiao, High-Entropy Alloys (HEAs), Metals, 2018, 8, p 108

    Article  CAS  Google Scholar 

  11. Y. Qiu, S. Thomas, M.A. Gibson, H.L. Fraser, and N. Birbilis, Corrosion of High Entropy Alloys, NPJ Mater. Degrad., 2017, 1, p 1–18

    Article  Google Scholar 

  12. Q.-D. Qin, J.-B. Qu, Y. Hu, Y. Wu, and X. Su, Microstructural Characterization and Oxidation Resistance of Multicomponent Equiatomic CoCrCuFeNi–TiO High-Entropy Alloy, Inter. J. Miner. Metall. Mater., 2018, 25(11), p 1286

    Article  CAS  Google Scholar 

  13. Y. Shi, B. Yang, and P.K. Liaw, Corrosion-Resistant High-Entropy Alloys: A Review, Metals, 2017, 7, p 43

    Article  CAS  Google Scholar 

  14. H. Luo, Z. Li, A.M. Mingers, and D. Raable, Corrosion behavior of an equiatomic CoCrFeMnNi high-entropy alloy compared with 304 stainless steel in sulfuric acid solution, Corros. Sci., 2018, 134(15), p 131–139

    Article  CAS  Google Scholar 

  15. X. Zhang, J. Guo, X. Zhang, Y. Song, Z. Li, X. Xing, and D. Kong, Influence of Remelting and Annealing Treatment on Corrosion Resistance of AlFeNiCoCuCr High Entropy Alloy in 3.5% NaCl Solution, J. Alloys Compd., 2019, 775, p 565–570

    Article  CAS  Google Scholar 

  16. K.K. Alanemea, M.O. Bodunrina, and S.R. Okea, Processing, Alloy Composition and Phase Transition Effect on the Mechanical and Corrosion Properties of High Entropy Alloys: a Review, J. Mater. Res. Technol., 2016, 5(4), p 384–393

    Article  CAS  Google Scholar 

  17. S.J. Mary, N. Rajan, S. Rajendran, and R. Epshipha, HEAs and Corrosion Resistance-a Bird’s Eye View, Eur. Chem. Bull, 2014, 3, p 1031–1035

    Google Scholar 

  18. Y.L. Chou, Y.C. Wang, J.W. Yeh, and H.C. Shih, Pitting corrosion of the high-entropy alloy Co1.5CrFeNi1.5Ti0.5Mo0.1 in chloride-containing sulphate solutions, Corris. Sci., 2010, 52, p 3481–3491

    Article  CAS  Google Scholar 

  19. C.P. Lee, C.C. Chang, Y.Y. Chen, J.W. Yeh, and H.C. Shih, Effect of the Aluminium Content of AlxCrFe1.5MnNi0.5 High-Entropy Alloys on the Corrosion Behaviour in Aqueous Environments, Corros. Sci., 2008, 50(7), p 2053–2060

    Article  CAS  Google Scholar 

  20. K.A. Abdelghafar, M.M. Ibrahim, M.A. Shoeib, and M.A. Waly, Evaluation of Microstructural and Corrosion Resistance of as-cast Cu45Mn25Al15Fe5Cr5Ni5 HEA, Mater. Res. Express, 2020, 7, p 016579

    Article  CAS  Google Scholar 

  21. Xing-Wu Qiu and Chun-Ge Liu, Microstructure and Properties of Al2CrFeCoCuTiNix High-Entropy Alloys Prepared by Laser Cladding, J. Alloys Compd, 2013, 553, p 216–220

    Article  CAS  Google Scholar 

  22. O.R.M. Khalifa, A.K. Kassab, H.A. Mohamed, and S.Y. Ahmed, Corrosion inhibition of copper and copper alloy in 3M nitric acid solution using organic inhibitors, J. Am. Sci., 2010, 6(8), p 487

    Google Scholar 

  23. R.H. Taha, G.H.A. Gaber, L.Z. Mohamed, and W.A. Ghanem, Corrosion inhibition of two Schiff base complexes on the mild steel in 1 M HCl in solution, Egypt. J. Chem., 2019, 62(Special Issue (Part 1)), p 367–381

    Google Scholar 

  24. G.H.A. Gaber, H.A. Aly, and L.Z. Mohamed, Effect of Sodium Tungstate on the Corrosion Behavior of Fe-Base Alloy in H2SO4 Solution, Int. J. Electrochem. Sci., 2020, 15(8), p 8229–8240

    Article  CAS  Google Scholar 

  25. W.A. Ghanem, I.M. Ghayad, and G.H.A. Gaber, Corrosion Behavior of Reinforcing Steel in Cement Partially Replaced with Metakaolin in 3.5% NaCl and 5% MgSO4 Solution, Inter. J. Metall. Mater Sci. Eng. (IJMMSE), 2013, 3(5), p 1–8

    Google Scholar 

  26. W. Tu, Y. Cheng, T. Zhan, J. Han, and Ch Yingliang, Influence of Sodium Tungstate and Sealing Treatment on Corrosion Resistance of Coatings Formed on AZ31 Magnesium Alloy by Plasma Electrolytic Oxidation, Int. J. Electrochem. Sci., 2017, 12, p 10863–10881

    Article  CAS  Google Scholar 

  27. B. Ren, Z.X. Liu, B. Cai, M.X. Wang, and L. Shi, Aging Behavior of a CuCr2Fe2NiMn High-Entropy Alloy, Mater. Des., 2012, 33, p 121–126

    Article  CAS  Google Scholar 

  28. B. Ren, Z.X. Liu, D.M. Li, L. Shi, B. Cai, and M.X. Wang, Effect of Elemental Interaction on Microstructure of CuCrFeNiMn HEA System, J. Alloys Compd., 2010, 49, p 3148–3153

    Google Scholar 

  29. Y.K. Kim et al., Correlation Between Mechanical Properties and Thermodynamic Parameters of Dual-fcc-Phase CoCrFeCuxNi (x = 1, 1.71) and CoCu1. 71FeMnNi, Mater. Lett., 2020, 272, p 127866

    Article  CAS  Google Scholar 

  30. A. Takeuchi and A. Inoue, Classification of Bulk Metallic Glasses by Atomic Size Difference, Heat of Mixing and Period of Constituent Elements and Its Application to Characterization of the Main Alloying Element, Mater. Trans., 2005, 46, p 2817–2829

    Article  CAS  Google Scholar 

  31. S.G. Ma, J.W. Qiao, Z.H. Wang, H.J. Yang, and Y. Zhang, Microstructural Features and Tensile Behaviors of the Al0.5CrCuFeNi2 High-Entropy Alloys by Cold Rolling and Subsequent Annealing, Mater. Des., 2015, 88, p 1057–1062

    Article  CAS  Google Scholar 

  32. O.H.S. Min and I.S. Hong, Microstructural Evolution and Mechanical Properties in a Mn1.05Fe1.05CoNiCu0.9 high entropy alloy, Key Eng. Mater., 2017, 737, p 44–49

    Article  Google Scholar 

  33. A. Manzoni, H. Daoud, S. Mondal, S. van Smaalen, R. Völk, U. Glatze, and N. Wanderka, Investigation of Phases in Al23Co15Cr23Cu8Fe15Ni16 and Al8Co17Cr17Cu8Fe17Ni33 High Entropy Alloys and Comparison with Equilibrium Phases Predicted by Thermo-Calc, J. Alloys Compd, 2013, 552, p 430–436

    Article  CAS  Google Scholar 

  34. A.D. Usman, A.F. Victoria, and L.N. Okoro, Weight Loss Corrosion Study of Some Metals in Acid Medium, J. Advan. Chemis., 2015, 11(2), p 3435–3440

    Google Scholar 

  35. W.A. Hussein, A.S.I. Ahmed, W.A. Ghanem, and GhA Gaber, Studies of Corrosion and Electrochemical Behavior of Cu-Zn Alloys in H2SO4 and HNO3 Acid Solutions, J. Metall. Eng. (ME), 2016, 5, p 27–37

    Google Scholar 

  36. M.M. Al-Abdallah, A.K. Maayta, M.A. Al-Qudah, and N.A.F. Al-Rawashdeh, Corrosion Behavior of Copper in Chloride Media, Open Corros. J., 2009, 2, p 71–76

    Article  CAS  Google Scholar 

  37. M. Pourbaix, Atlas of Electrochemical Equilibria in Aqueous Solutions, NACE Int. Cebelcor, USA, 1974, p 384–392

    Google Scholar 

  38. J.C. Scully, The Fundamentals of Corrosion, 3rd ed., Pergamon Press, Oxford, 1990, p 75

    Google Scholar 

  39. M.B. Mahida, H.G. Chaudhari, and M.H. Metawal, Inhibitory Effect of Some Dyes on 60/40 Brass in Nitric Acid, Der Pharma Chem., 2013, 5(2), p 216–223

    CAS  Google Scholar 

  40. W.A. Ghanem, A.S.I. Ahmed, W.A. Hussein, and GhA Gaber, Electrochemical Behavior and Effect of Temperature on Dezincification of Cu-Zn Alloys in Brine Solution, Inter. J. Metall. Mater. Sci. Eng. (IJMMSE), 2016, 6(4), p 1–16

    Google Scholar 

  41. C.A. Loto and R.T. Loto, Corrosion Resistance Behaviour of Duplex (α β) Brass in Nitric Acid Concentrations, Int. J. Electrochem. Sci., 2012, 7, p 12021–12033

    CAS  Google Scholar 

  42. S. Yunzhu, B. Yang, and P.K. Liaw, Corrosion-Resistant High-Entropy Alloys: a Review, Metals, 2017, 7(2), p 43

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lamiaa Z. Mohamed.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aly, H.A., Abdelghafar, K.A., Gaber, G.A. et al. Fabrication, Characterization, and Corrosion Behavior of a New Cu40Mn25Al20Fe5Co5Ni5 High-Entropy Alloy in HNO3 Solution. J. of Materi Eng and Perform 30, 1430–1443 (2021). https://doi.org/10.1007/s11665-020-05390-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-020-05390-9

Keywords

Navigation