Skip to main content
Log in

Effect of Boron on the Microstructure Evolution and Dynamic Recrystallization Kinetics of ALLVAC718Plus Superalloy

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

A Correction to this article was published on 05 January 2021

This article has been updated

Abstract

In this study, the effect of boron addition on the hot compression behavior and dynamic recrystallization kinetics of 718Plus nickel-based superalloy were investigated by isothermal compression tests at the deformation temperature range of 900-1050 °C and strain rate range of 0.01-1 s−1. Optical and field emission scanning electron microscopy techniques were employed to investigate the microstructural evolutions. The results indicated that the addition of boron reduces the flow stress of 718Plus superalloy. This could be attributed to the decrease in the volume fraction of Ni3(Al, Ti) particles. Microstructural observations revealed more volume fraction of dynamic recrystallization in the boron-bearing alloy at low-deformation temperatures, i.e., 900 and 950 °C. In contrast, at high temperatures of 1000-1050 °C, recrystallization is retarded mainly due to the segregation of boron to the grain boundaries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

Change history

  • 05 January 2021

    In the originally published article, the names of the first and third authors were misspelled.

References

  1. M. Kattoura, A. Telang, S. Ramaiah, D. Qian, and V.K. Vasudevan, Effect of Ultrasonic Nanocrystal Surface Modification on Residual Stress, Microstructure and Fatigue Behavior of ATI, 718Plus alloy, Mater. Sci. Eng., A, 2018, 711, p 364–377

    CAS  Google Scholar 

  2. G.A. Zickler, R. Schnitzer, R. Radis, R. Hochfellner, R. Schweins, M. Stockinger, and H. Leitner, Microstructure and Mechanical Properties of the Superalloy ATI, Allvac®718Plus™, Mater. Sci. Eng., A, 2009, 523(1–2), p 295–303

    Google Scholar 

  3. O.A. Idowu, O.A. Ojo, and M.C. Chaturvedi, Effect of Heat Input on Heat Affected Zone Cracking in Laser Welded ATI, Allvac 718Plus Superalloy, Mater. Sci. Eng., A, 2007, 454–455, p 389–397

    Google Scholar 

  4. M. Kattoura, S.R. Mannava, D. Qian, and V.K. Vasudevan, Effect of Ultrasonic Nanocrystal Surface Modification on Elevated Temperature Residual Stress, Microstructure, and Fatigue Behavior of ATI, 718Plus Alloy, Mater. Sci. Eng., A, 2018, 110, p 186–196

    CAS  Google Scholar 

  5. R. Krakow, D.N. Johnstone, A.S. Eggeman, D. Hünert, M.C. Hardy, C.M.F. Rae, and P.A. Midgley, On the Crystallography and Composition of Topologically Close-Packed Phases in ATI, 718Plus®, Acta Mater., 2017, 130, p 271–280

    CAS  Google Scholar 

  6. S.A. Hosseini, S.M. Abbasi, and K.Z. Madar, The Effect of Boron and Zirconium on Microstructure and Tensile Properties of the Wrought Nickel-Based Superalloy ATI, 718Plus, Mater. Sci. Eng., A, 2018, 712, p 780–789

    CAS  Google Scholar 

  7. L. Xiao, M.C. Chaturvedi, and D. Chen, Effect of Boron and Carbon on the Fracture Toughness of IN 718 Superalloy at Room Temperature and 650° C, J. Mater. Eng. Perform., 2005, 14(4), p 528–538

    CAS  Google Scholar 

  8. L. Xiao, D.L. Chen, and M.C. Chaturvedi, Effect of Boron on Fatigue Crack Growth Behavior in Superalloy IN 718 at RT and 650 °C, Mater. Sci. Eng., A, 2006, 428(1–2), p 1–11

    Google Scholar 

  9. S. Floreen and J.M. Davidson, The Effects of B and Zr on the Creep and Fatigue Crack Growth Behavior of a Ni-Base Superalloy, Metall. Trans. A, 1983, 14, p 895–901

    CAS  Google Scholar 

  10. B. Du, Z. Shi, J. Yang, Z. Chu, C. Cui, X.F. Sun, L. Sheng, and Y. Zheng, M5B3 Boride at the Grain Boundary of a Nickel-based Superalloy, J. Mater. Sci. Technol., 2016, 32(3), p 265–270

    CAS  Google Scholar 

  11. P.J. Zhou, J.J. Yu, X.F. Sun, H.R. Guan, and Z.Q. Hu, The Role of Boron on a Conventional Nickel-Based Superalloy, Mater. Sci. Eng., A, 2008, 491(1–2), p 159–163

    Google Scholar 

  12. L. Xiao, M. Chaturvedi, and D. Chen, Effect of Boron on the Low-Cycle Fatigue Behavior and Deformation Structure of Inconel 718 at 650° C, Metall. Mater., 2004, 35, p 3477–3487

    Google Scholar 

  13. X.L. He, Y.Y. Chu, and J.J. Jonas, The Grain Boundary Segregation of Boron during Isothermal Holding, Acta Met., 1989, 37, p 2905–2916

    CAS  Google Scholar 

  14. H. Norden and L. Karlsson, Grain Boundary Segregation of Boron in Austenitic Stainless Steel-II: Fine Scale Segregation Behaviour, Acta Met., 1988, 36(1), p 13–24

    Google Scholar 

  15. W. Chen, M.C.C. Chaturvedi, N.L.L. Richards, and G. McMahon, Grain Boundary Segregation of Boron in Inconel 718, Metall. Mater. Trans. A, 1998, 29(7), p 1947–1954

    Google Scholar 

  16. X.L. He, Y.Y. Chu, and J.J. Jonas, Grain boundary Segregation of Boron during Continuous Cooling, Acta Metall., 1989, 37(1), p 147–161

    CAS  Google Scholar 

  17. X. Tingdong, S. Shenhua, S. Huazhong, W. Gust, and Y. Zhexi, A Method of Determining the Diffusion Coefficient of Vacancy-Solute Atom Complexes during the Segregation to Grain Boundaries, Acta Metall. Mater., 1991, 39(12), p 3119–3124

    Google Scholar 

  18. X.B. Hu, Y.L. Zhu, N.C. Sheng, and X.L. Ma, The Wyckoff Positional Order and Polyhedral Intergrowth in the M3B2 - and M5B3-Type Boride Precipitated in the Ni-Based Superalloys, Sci. Rep., 2014, 4, p 2–10

    Google Scholar 

  19. X.B. Hu, L.Z. Zhou, J.S. Hou, X.Z. Qin, and X.L. Ma, Interfacial Precipitation of the M5B3 -Type Boride in Ni-Based Superalloys, Philos. Mag. Lett., 2016, 96(7), p 273–279

    CAS  Google Scholar 

  20. X.L. He, M. Djahazi, J.J. Jonas, and J. Jackman, The Non-equilibrium Segregation of Boron during the Recrystalization of Nb-Treated HSLA Steels, Acta Metall., 1991, 39(10), p 2295–2308

    CAS  Google Scholar 

  21. F. Yang, J. Hou, S. Gao, C. Wang, and L. Zhou, The Effects of Boron Addition on the Microstructure Stability and Mechanical Properties of a Ni-Cr Based Superalloy, Mater. Sci. Eng., A, 2018, 715, p 126–136

    CAS  Google Scholar 

  22. G.B. Viswanathan, R. Shi, A. Genc, V.A. Vorontsov, L. Kovarik, C.M.F. Rae, and M.J. Mills, Segregation at Stacking Faults Within the γ′ Phase of Two Ni-Base Superalloys Following Intermediate Temperature Creep, Scr. Mater., 2015, 94, p 5–8

    CAS  Google Scholar 

  23. G.R. Ebrahimi, A. Momeni, S.M. Abbasi, and H. Monajatizadeh, Constitutive Analysis and Processing Map for Hot Working of a Ni-Cu Alloy, Met. Mater. Int., 2013, 19(1), p 11–17

    CAS  Google Scholar 

  24. H. Monajati, M. Jahazi, S. Yue, and A.K. Taheri, Deformation Characteristics of Isothermally Forged UDIMET 720 Nickel-Base Superalloy, Metall. Mater. Trans. a-Physical Metall. Mater. Sci., 2005, 36A(4), p 895–905

    CAS  Google Scholar 

  25. Y. Wang, W.Z. Shao, L. Zhen, L. Yang, and X.M. Zhang, Flow Behavior and Microstructures of Superalloy 718 during High Temperature Deformation, Mater. Sci. Eng., A, 2008, 497(1), p 479–486

    Google Scholar 

  26. S. Guo, D. Li, H. Pen, Q. Guo, and J. Hu, Hot Deformation and Processing Maps of Inconel 690 superalloy, J. Nucl. Mater., 2011, 410(1–3), p 52–58

    CAS  Google Scholar 

  27. N. Srinivasan and Y. Parasad, Microstructural Control in Hot Working of IN-718 Superalloy Using Processing Map, Metall. Met. Trans. A, 1994, 25, p 2275–2284

    Google Scholar 

  28. L.X. Zhou and T.N. Backer, Effects of Strain Rate and Temperature on Deformation Behaviour of IN 718 during High Temperature Deformation, Mater. Sci. Eng. A, 1994, 177, p 1–9

    CAS  Google Scholar 

  29. Y. Wang, W.Z. Shao, L. Zhen, C. Yang, and X.M. Zhang, Tensile Deformation Behavior of Superalloy 718 at Elevated Temperatures, J. Alloys Compd., 2009, 471, p 331–335

    CAS  Google Scholar 

  30. D.X. Wen, Y.C. Lin, H.B. Li, X.M. Chen, J. Deng, and L.T. Li, Hot Deformation Behavior and Processing Map of a Typical Ni-Based Superalloy, Mater. Sci. Eng., A, 2014, 591, p 183–192

    CAS  Google Scholar 

  31. X.M. Chen, Y.C. Lin, D.X. Wen, J.L. Zhang, and M. He, Dynamic Recrystallization Behavior of a Typical Nickel-Based Superalloy during Hot Deformation, Mater. Des., 2014, 57, p 568–577

    CAS  Google Scholar 

  32. M. Militzer, W.P. Sun, and J.J. Jona, Modelling the Effect of Deformation: Induced Vacancies on Segregation and Precipitation, Acta Mater., 1994, 42(1), p 133–141

    CAS  Google Scholar 

  33. L. Karlsson, H. Nordén, and H. Odelius, Non-Equilibrium Grain Boundary Segregation of Boron in Austenitic Stainless Steel-I: Large Scale Segregation Behaviour, Acta Metall., 1988, 36(1), p 1–12

    CAS  Google Scholar 

  34. D. Cai, L. Xiong, W. Liu, G. Sun, and M. Yao, Development of Processing Maps for a Ni-Based Superalloy, Mater. Charact., 2007, 58(10), p 941–946

    CAS  Google Scholar 

  35. Y.C. Lin, X.Y. Wu, X.M. Chen, J. Chen, D.X. Wen, J.L. Zhang, and L.T. Li, EBSD Study of a Hot Deformed Nickel-Based Superalloy, J. Alloys Compd., 2015, 640, p 101–113

    CAS  Google Scholar 

  36. M. Azarbarmas, M. Aghaie-Khafri, J.M. Cabrera, and J. Calvo, Dynamic Recrystallization Mechanisms and Twining Evolution during Hot Deformation of Inconel 718, Mater. Sci. Eng., A, 2016, 678, p 137–152

    CAS  Google Scholar 

  37. S.C. Medeiros, Y.V.R.K. Prasad, W.G. Frazier, and R. Srinivasan, Microstructural Modeling of Metadynamic Recrystallization in Hot Working Of IN 718 Superalloy, Mater. Sci. Eng., A, 2000, 293(1), p 198–207

    Google Scholar 

  38. M. Jahazi and J.J. Jonas, The Non-Equilibrium Segregation of Boron on Original and Moving Austenite Grain boundaries, Mater. Sci. Eng., A, 2002, 335(1–2), p 49–61

    Google Scholar 

  39. S.-H. Song, Q. Zhang, and L.-Q. Weng, Deformation-Induced Non-Equilibrium Grain Boundary Segregation in Dilute Alloys, Mater. Sci. Eng., A, 2008, 473(1–2), p 226–232

    Google Scholar 

  40. R. Ding, Grain Boundary Segregation in Ni-Base (718 Plus) Superalloy, Mater. Sci. Technol., 2010, 26(1), p 36–40

    Google Scholar 

  41. J.J. Jonas and L.T. Mavropoulos, Effect of the Combined Addition of Niobiumand Boron on Static Recrystallization in Hot Worked Austenite, Can. Metall., 1988, 27(3), p 235–246

    Google Scholar 

  42. F. Masoumi, M. Jahazi, D. Shahriari, and J. Cormier, Coarsening and Dissolution of γ″ Precipitates during Solution Treatment of AD730TM Ni-Based Superalloy: mechanisms and Kinetics Models, J. Alloys Compd., 2016, 658, p 981–995

    CAS  Google Scholar 

  43. X.B. Hu, Y.L. Zhu, and X.L. Ma, Crystallographic Account of Nano-Scaled Intergrowth of M2B-Type Borides in Nickel-Based Superalloys, Acta Mater., 2014, 68, p 70–81

    CAS  Google Scholar 

  44. W. Mo, X. Hu, S. Lu, D. Li, and Y. Li, Effects of Boron on the Microstructure, Ductility-Dip-Cracking, and Tensile Properties for NiCrFe-7 Weld Metal, J. Mater. Sci. Technol., 2014, 31(12), p 1258–1267

    Google Scholar 

  45. G.Z. Quan, G.S. Li, T. Chen, Y.X. Wang, Y.W. Zhang, and J. Zhou, Dynamic Recrystallization Kinetics of 42crmo Steel during Compression at Different Temperatures and Strain Rates, Mater. Sci. Eng., A, 2011, 528(13–14), p 4643–4651

    Google Scholar 

  46. G.-Z. Quan, A. Mao, G.-C. Luo, J.-T. Liang, D.-S. Wu, and J. Zhou, Constitutive Modeling for the Dynamic Recrystallization Kinetics of As-extruded 3Cr20Ni10W2 Heat-Resistant Alloy Based on Stress-Strain Data, Mater. Des., 2013, 52, p 98–107

    CAS  Google Scholar 

  47. C.M. Sellars and W.J.-M. Tegart, Hot Workability, Int. Metall. Rev., 1972, 17(1), p 1–24

    CAS  Google Scholar 

  48. H.R. Ezatpour, S.A. Sajjadi, and M. Haddad-Sabzevar, Influence of Hot Deformation Strain rate on the Mechanical Properties and Microstructure of K310 Cold Work Tool Steel, Mater. Sci. Eng., A, 2010, 527(6), p 1299–1305

    Google Scholar 

  49. A. Hamada, T. Juuti, A. Khosravifard, A. Kisko, P. Karjalainen, D. Porter, and J. Kömi, Effect of Silicon on the Hot Deformation Behavior of Microalloyed TWIP-Type Stainless Steels, Mater. Des., 2018, 154, p 117–129

    CAS  Google Scholar 

  50. S.A. Sajjadi, A. Chaichi, H.R. Ezatpour, A. Maghsoudlou, and M.A. Kalaie, Hot Deformation Processing Map and Microstructural Evaluation of the Ni-Based Superalloy IN-738LC, J. Mater. Eng. Perform., 2016, 25(4), p 1269–1275

    CAS  Google Scholar 

  51. G. Ji, F. Qin, L. Zhu, Q. Li, and L. Li, Dynamic Recrystallization Kinetics of Cu-0.36Cr-0.03Zr Alloy during Hot Compression, J. Mater. Eng. Perform., 2017, 26(6), p 2698–2707

    CAS  Google Scholar 

  52. A. Momeni and K. Dehghani, Prediction of Dynamic Recrystallization Kinetics and Grain Size for 410 Martensitic Stainless Steel during Hot Deformation, Met. Mater. Int., 2010, 16(5), p 843–849

    CAS  Google Scholar 

  53. H.R. Ezatpour, M. Torabi-Parizi, G.R. Ebrahimi, and A. Momeni, Effect of Micro-Alloy Elements on Dynamic Recrystallization Behavior of a High-Manganese Steel, Steel Res. Int., 2018, 89(7), p 1–10

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gholamreza Ebrahimi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ershadiki, H., Ebrahimi, G., Ezatpour, H. et al. Effect of Boron on the Microstructure Evolution and Dynamic Recrystallization Kinetics of ALLVAC718Plus Superalloy. J. of Materi Eng and Perform 30, 212–227 (2021). https://doi.org/10.1007/s11665-020-05258-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-020-05258-y

Keywords

Navigation