Skip to main content
Log in

Critical Magnetic Behavior of the Rare Earth-Based Alloy GdN: Monte Carlo Simulations and Density Functional Theory Method

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

In this study, we use Monte Carlo simulations (MCS) and DFT method in order to deduce the critical magnetic behavior of the rare earth-based alloy GdN. The Monte Carlo method is based on the Metropolis algorithm, while the DFT method is applied under the generalized gradient approximation. In a first step, we discuss and study the density of states, the exchange coupling interactions, the crystal field and the Curie temperature within the mean-field approximation. We started by studying the ground state phase diagrams in the different planes of the physical parameters. In fact, we present and discuss the behavior of total magnetizations and susceptibilities as a function of: the temperature, the crystal field, the exchange coupling interactions and the external magnetic field. To complete this study, the hysteresis loops are illustrated and analyzed when varying the external magnetic field for fixed specific values of the other physical parameters. The obtained values of the critical exponents of the GdN compound have been deduced and compared with those existing in the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. F. Natali, B.J. Ruck, N.O.V. Plank, H.J. Trodahl, S. Granville, C. Meyer, and W.R.L. Lambrecht, Molecular Beam Epitaxy of Ferromagnetic Epitaxial GdN Thin Films, Prog. Mater Sci., 2013, 58, p 1316

    Article  CAS  Google Scholar 

  2. H. Warring, B.J. Ruck, H.J. Trodahl, and F. Natali, Electric Field and Photo-Excited Control of the Carrier Concentration in GdN, Appl. Phys. Lett., 2013, 102, p 132409

    Article  Google Scholar 

  3. K. Senapati, M.G. Blamire, and Z.H. Barber, Spin-Filter Josephson Junctions, Spin-Filter Josephson Junctions, Nat. Mater., 2011, 10, p 849

    Article  CAS  Google Scholar 

  4. M.G. Blamire, A. Pal, Z.H. Barber, K. Senapati, in Proceedings of the SPIE 8461 (2013) 84610 J (Spintronics V)

  5. E.-M. Anton, J.F. McNulty, B.J. Ruck, M. Suzuki, M. Muzumaki, V.N. Antonov, J.W. Quilty, N. Strickland, and H.J. Trodahl, NdN: An Intrinsic Ferromagnetic Semiconductor, Phys. Rev. B, 2016, 93, p 064431

    Article  Google Scholar 

  6. S. Krishnamoorthy, T. Kent, J. Yang, P.S. Park, R.C. Myers, and S. Rajan, GdN Nanoisland-Based GaN Tunnel Junctions, Nano Lett., 2013, 13, p 2570

    Article  CAS  Google Scholar 

  7. A. Kandala, A. Richardella, D. W. Rench, D.M. Zhang, T.C. Flanagan, N. Samarth, Growth and Characterization of Hybrid Insulating Ferromagnet-Topological Insulator Heterostructure Devices, arXiv: 1212.1225 (2013).

  8. B.M. Ludbrook, The Magnetic Properties of Selected Rare Earth Nitrides Grown by Pulsed Laser Deposition (2009)

  9. M. Azeem, Optical Properties of Rare Earth Nitrides. Ph.D. Thesis University of Sharjah (2013). https://doi.org/10.13140/rg.2.1.3994.4729

  10. H. Yoshitomi, S. Kitayama, T. Kita, O. Wada, M. Fujisawa, H. Ohta, and T. Sakurai, Optical and Ferromagnetic Properties of GdN Thin Films, Phys. Status Solidi (c), 2011, 8, p 488–490

    Article  CAS  Google Scholar 

  11. M. Azeem, B.J. Ruck, B. Le Do, H. Warring, H.J. Trodahl, N.M. Strickland, A. Koo, V. Goian, and S. Kamba, Optical Response of DyN, J. Appl. Phys., 2013, 113, p 203509

    Article  Google Scholar 

  12. V. Srivastava, M. Rajagopalan, and S.P. Sanyal, Theoretical Investigation on Structural, Magnetic and Electronic Properties of Ferromagnetic GdN Under Pressure, J. Magn. Magn. Mater., 2009, 321, p 607

    Article  CAS  Google Scholar 

  13. A. Sharma and W. Nolting, Temperature dependent electronic correlation effects in GdN, J. Phys.: Condens. Matter, 2006, 18, p 7337

    CAS  Google Scholar 

  14. C. Duan, R.F. Sabiryanov, J. Liu, W.N. Mei, P.A. Dowben, and J.R. Hardy, Strain Induced Half-Metal to Semiconductor Transition in GdN, Phys. Rev. Lett., 2005, 94, p 237201

    Article  Google Scholar 

  15. V. Mankad, S.K. Gupta, and P.K. Jha, Ab Initio Investigation on Structural, Electronic and Lattice Dynamical Properties of MgN and GdN Crystals, Results Phys., 2012, 2, p 34–40. https://doi.org/10.1016/j.rinp.2012.03.002

    Article  CAS  Google Scholar 

  16. S. Granville, B.J. Ruck, F. Budde, A. Koo, D.J. Pringle, F. Kuchler et al., Semiconducting Ground State of Thin Films, Phys. Rev. B, 2006, 73, p 235335

    Article  Google Scholar 

  17. S. Granville, C. Meyer, A.R.H. Preston, B.M. Ludbrook, B.J. Ruck, H.J. Trodahl et al., Vibrational Properties of Rare-Earth Nitrides: Raman Spectra and Theory, Phys. Rev. B, 2009, 79, p 054301

    Article  Google Scholar 

  18. B.M. Ludbrook, I.L. Farrell, M. Kuebel, B.J. Ruck, A.R.H. Preston, H.J. Trodahl et al., Growth and Properties of Epitaxial GdN, Appl. Phys., 2009, 106, p 063910

    Article  Google Scholar 

  19. D. Massarotti, R. Caruso, A. Pal, G. Rotoli, L. Longobardi, G.P. Pepe, M.G. Blamire, and F. Tafuri, Low Temperature Properties of Spin Filter NbN/GdN/NbN Josephson Junctions, Phys. C Supercond. Appl., 2017, 533, p 53–58. https://doi.org/10.1016/j.physc.2016.07.018

    Article  CAS  Google Scholar 

  20. W. Mingjian, S.C. Erwin, and A. Trampert, Atomistic Structure and Energetics of GdN Clusters in Gd-Doped GaN, Acta Mater., 2014, 76, p 87–93. https://doi.org/10.1016/j.actamat.2014.05.009

    Article  CAS  Google Scholar 

  21. F. Alfaro, J.C. Sagás, B.H. Bernhard, and L.C. Fontana, Isothermal Magnetic Entropy Change in Gd/GdN Superlattices, Mater. Lett., 2019, 239, p 37–39. https://doi.org/10.1016/j.matlet.2018.12.053

    Article  CAS  Google Scholar 

  22. R. Vidyasagar, T. Kita, T. Sakurai, T. Shimokawa, and H. Ohta, Ferromagnetic Resonance Features of Degenerate GdN Semiconductor, Phys. Lett. A, 2017, 381(22), p 1905–1909. https://doi.org/10.1016/j.physleta.2017.03.031

    Article  CAS  Google Scholar 

  23. F. Natali, S. Vézian, S. Granville, B. Damilano, H.J. Trodahl, E.-M. Anton, H. Warring, F. Semond, Y. Cordier, S.V. Chong, and B.J. Ruck, Molecular Beam Epitaxy of Ferromagnetic Epitaxial GdN Thin Films, J. Cryst. Growth, 2014, 404, p 146–151. https://doi.org/10.1016/j.jcrysgro.2014.07.010

    Article  CAS  Google Scholar 

  24. K. Mahmood, J. Jacob, M. Ibrahim, A. Ail, N. Amin, and S. Ikram, Modulation of Structural, Electrical, Optical and Thermoelectric Properties of MOCVD Grown GdN Thin Films by Nitrogen Environment Annealing Process, Optik, 2020, 206, p 163435. https://doi.org/10.1016/j.ijleo.2019.163435

    Article  CAS  Google Scholar 

  25. H. Yi, L.M. Peng, D.L. Zhang, W. Zeng, L. Wan, J.Y. Han, X.W. Cheng, and W.J. Ding, Fabrication of a Bulk GdN Nanoparticles-Reinforced Mg-Gd Matrix Nanocomposite with Phenomenal Mechanical Properties, Mater. Lett., 2016, 185, p 127–130. https://doi.org/10.1016/j.matlet.2016.08.123

    Article  CAS  Google Scholar 

  26. W. Han, G. Zhou, D. Gao, Z. Zhang, Z. Wei, H. Wang, and H. Yang, Experimental Analysis of the Pore Structure and Fractal Characteristics of Different Metamorphic Coal Based on Mercury Intrusion-Nitrogen Adsorption Porosimetry, Powder Technol., 2020, 362, p 386–398. https://doi.org/10.1016/j.powtec.2019.11.092

    Article  CAS  Google Scholar 

  27. W. Han, G. Zhou, Q. Zhang, H. Pan, and D. Liu, Experimental Study on Modification of Physicochemical Characteristics of Acidified Coal by Surfactants and Ionic Liquids, Fuel, 2020, 266, p 116966. https://doi.org/10.1016/j.fuel.2019.116966

    Article  CAS  Google Scholar 

  28. H.J. Trodahl, A.R.H. Preston, J. Zhong, B.J. Ruck, N.M. Strickland, C. Mitra, and W.R.L. Lambrecht, Ferromagnetic Redshift of the Optical Gap in GdN, Phys. Rev. B, 2007, 76, p 085211

    Article  Google Scholar 

  29. R. Vidyasagar, S. Kitayama, H. Yoshitomi, T. Kita, T. Sakurai, and H. Ohta, Study on Spin-Splitting Phenomena in the Band Structure of GdN, Appl. Phys. Lett., 2012, 100, p 232410

    Article  Google Scholar 

  30. I.N. Sivkov, O.O. Brovko, and V.S. Stepanyuk, Spin-Polarized Transport Properties of GdN Nanocontacts, Phys. Rev. B, 2014, 89, p 195419

    Article  Google Scholar 

  31. R. Vidyasagar, H. Yoshitomi, S. Kitayama, and T. Kita, Microscopic Properties of Degradation-Free Capped GdN Thin Films Studied by Electron Spin Resonance, J. Appl. Phys., 2015, 117, p 043909

    Article  Google Scholar 

  32. R. Liu, G. Zhou, C. Wang, W. Jiang, and X. Wei, Preparation and Performance Characteristics of an Environmentally-Friendly Agglomerant to Improve the Dry Dust Removal Effect for Filter Material, J. Hazard. Mater., 2020, 397, p 122734. https://doi.org/10.1016/j.jhazmat.2020.122734

    Article  CAS  Google Scholar 

  33. S. Li, G. Zhou, Z. Liu, N. Wang, Z. Wei, and W. Liu, Synthesis and Performance Characteristics of a New Ecofriendly Crust-Dust Suppressantextracted from Waste Paper for Surface Mines, J. Clean. Prod., 2020, 258, p 120620. https://doi.org/10.1016/j.jclepro.2020.120620

    Article  CAS  Google Scholar 

  34. J. Ding, G. Zhou, D. Liu, W. Jiang, Z. Wei, and X. Dong, Synthesis and Performance of a Novel High-Efficiency Coal Dust Suppressant Based on Self-healing Gel, Environ. Sci. Technol., 2020, https://doi.org/10.1021/acs.est.0c00613 (Publication Date (Web): 27 May 2020.)

    Article  Google Scholar 

  35. H. Labrim et al., Magnetic Proprieties of La2FeCoO6 Double Perovskite: Monte Carlo Study, J. Alloys Compd., 2015, 641, p 37–42

    Article  CAS  Google Scholar 

  36. L. Bahmad, R. Masrour, and A. Benyoussef, Nanographene Magnetic Properties: A Monte Carlo Study, J. Supercond. Nov. Magn., 2012, 25(6), p 2015–2018

    Article  CAS  Google Scholar 

  37. L. Bahmad, A. Benyoussef, and H. Ez-Zahraouy, Order–Disorder Layering Transitions of a Spin-1 Ising Model in a Variable Crystal Field, J. Magn. Magn. Mater., 2002, 251, p 115–121

    Article  CAS  Google Scholar 

  38. S. Idrissi, H. Labrim, S. Ziti, and L. Bahmad, Characterization of the Equiatomic Quaternary Heusler Alloy ZnCdRhMn: Structural, Electronic and Magnetic properties, J. Supercond. Nov. Magn., 2020, https://doi.org/10.1007/s10948-020-05561-8

    Article  Google Scholar 

  39. S. Idrissi, S. Ziti, H. Labrim, L. Bahmad, I. El Housni, R. Khalladi, S. Mtougui, and N. El Mekkaoui, Half-Metallic Behavior and Magnetic Proprieties of the Quaternary Heusler Alloys YFeCrZ (Z = Al, Sb and Sn), J. Alloys Compd., 2020, 820, p 153373. https://doi.org/10.1016/j.jallcom.2019.153373

    Article  CAS  Google Scholar 

  40. S. Idrissi, H. Labrim, S. Ziti, and L. Bahmad, Structural, Electronic, Magnetic Properties and Critical Behavior of the Equiatomic Quaternary Heusler Alloy CoFeTiSn, Phys. Lett. A, 2020, https://doi.org/10.1016/j.physleta.2020.126453

    Article  Google Scholar 

  41. S. Idrissi, H. Labrim, S. Ziti et al., Investigation of the Physical Properties of the Equiatomic Quaternary Heusler Alloy CoYCrZ (Z = Si and Ge): A DFT Study, Appl. Phys. A, 2020, 126, p 190. https://doi.org/10.1007/s00339-020-3354-6

    Article  CAS  Google Scholar 

  42. P. Giannouzzi et al., QUANTUM ESPRESSO: A Modular and Open-Source Software Project for Quantum Simulations of Materials, J. Phys.: Condens. Matter, 2009, 21, p 395502

    Google Scholar 

  43. D. Vanderbilt, Soft Self-consistent Pseudo-Potentials in a Generalized Eigenvalue Formalism, Phys. Rev. B, 1990, 41, p 7892–7895

    Article  CAS  Google Scholar 

  44. J.P. Perdew, J.A. Chevary, S.H. Vosko, K.A. Jackson, M.R. Pederson, D.J. Singh, and C. Fiolhais, Atoms, Molecules, Solids, and Surfaces: Applications of the Generalized Gradient Approximation for Exchange and Correlation, Phys. Rev. B, 1992, 46, p 6671–6687

    Article  CAS  Google Scholar 

  45. K. Khazen, H.J. von Bardeleben, J. Cantin, A. Bittar, S. Granville, H.J. Trodahl, and B.J. Ruck, Ferromagnetic Resonance Study of GdN Thin Films with Bulk and Extended Lattice Constants, Phys. Rev. B, 2006, 74, p 245330

    Article  Google Scholar 

  46. K. Momma and F. Izumi, VESTA 3 for Three-Dimensional Visualization of Crystal, Volumetric and Morphology Data, J. Appl. Crystallogr., 2011, 44, p 1272–1276

    Article  CAS  Google Scholar 

  47. J. Rusz, L. Bergqvist, J. Kudrnovský, and I. Turek, Exchange Interactions and Curie Temperatures in Ni2_xMnSb Alloys: First-Principles Study, Phys. Rev. B, 2006, 73, p 214412

    Article  Google Scholar 

  48. P. Landau and K. Binder, A Guide to Monte Carlo Simulations in Statistical Physics, Cambridge University Press, New York, 2005

    Book  Google Scholar 

  49. H.E. Stanley, Introduction to Phase Transition and Critical Phenomena, Clarendon Press, Oxford, 1971

    Google Scholar 

  50. V. Privman, Ed., Finite Size Scaling and Numerical Simulation of Statistical Systems, World Scientific, Singapore, 1990

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to S. Idrissi or L. Bahmad.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Idrissi, S., Ziti, S., Labrim, H. et al. Critical Magnetic Behavior of the Rare Earth-Based Alloy GdN: Monte Carlo Simulations and Density Functional Theory Method. J. of Materi Eng and Perform 29, 7361–7368 (2020). https://doi.org/10.1007/s11665-020-05214-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-020-05214-w

Keywords

Navigation