Skip to main content
Log in

Analysis of Mechanical and Thermal Properties of Aluminum-Chromium-Nitride-Coated Stainless Steel 316L Micrometal Lattice Fabricated by Selective Laser Sintering

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

Cellular materials, especially ordered lattice structures, contain lesser quantity of material than their bulk counterparts. Only a few researches are focused on composite microlattices and their performance at high temperatures. The aim of this scientific work is to analyze the thermal and mechanical properties and corrosion resistance of stainless steel 316L micrometal lattice (MML) fabricated by selective laser sintering method and to compare the thermal properties and corrosion resistance of aluminum-chromium-nitride-coated stainless steel 316 MML with that of the uncoated MML. The coating on the fabricated MML is done by physical vapor deposition. The coated and uncoated MMLs are subjected to dilatometry, corrosion test, thermogravimetric analysis (TGA) and differential scanning calorimetry and SEM analysis, whereas the uncoated MML was subjected to tension test and compression test in addition to the above-said tests. Simulation of these MML structures is carried out to correlate the results obtained, with the real-time test results. In compression test, the MMLs withstand a higher load owing to their octahedral arrangement of struts, which aided in uniform load distribution throughout the lattice. Also, the coated samples are found to be less prone to oxidation when subjected to high temperature as the coating prevented the formation of oxide, whereas the uncoated sample oxidized at higher temperatures as indicated by a considerable mass gain in the TGA plot and from the EDS analysis, which indicates the presence of oxygen in the uncoated MML. Another key result to be noted is that the uncoated MML distorted to a greater extent than the coated MML at higher temperatures as indicated from the dilatometry tests. These findings will be of use in future design/manufacturing optimizations in aerospace and automotive industries which require lightweight and high strength materials.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. J. Song, L. Gao, K. Cao, H. Zhang, S. Xu, C. Jiang, J. Surjadi, Y. Xu, and Y. Lu, Metal-Coated Hybrid Meso-Lattice Composites and Their Mechanical Characterizations, Compos. Struct., 2018, 203, p 750–763. https://doi.org/10.1016/j.compstruct.2018.07.074

    Article  Google Scholar 

  2. D. Kang, S. Park, Y. Son, S. Yeon, S.H. Kim, and I. Kim, Multi-lattice Inner Structures for High-Strength and Light-Weight in Metal Selective Laser Melting Process, Mater. Des., 2019, 175, p 107786. https://doi.org/10.1016/j.matdes.2019.107786

    Article  Google Scholar 

  3. R. Boyer and N. Padmapriya, Aircraft Materials, in Reference Module in Materials Science and Materials Engineering (2016). https://doi.org/10.1016/b978-0-12-803581-8.01934-2

  4. E.A. Calado, M. Leite, and A. Silva, Selecting Composite Materials Considering Cost and Environmental Impact in the Early Phases of Aircraft Structure Design, J. Clean. Prod., 2018, 186, p 113–122. https://doi.org/10.1016/j.jclepro.2018.02.048

    Article  Google Scholar 

  5. P. Köhnen, C. Haase, J. Bültmann, S. Ziegler, J.H. Schleifenbaum, and W. Bleck, Mechanical Properties and Deformation Behavior of Additively Manufactured Lattice Structures of Stainless Steel, Mater. Des., 2018, 145, p 205–217. https://doi.org/10.1016/j.matdes.2018.02.062

    Article  CAS  Google Scholar 

  6. M.E. Lynch, M. Mordasky, L. Cheng, and A. To, Design, Testing, and Mechanical Behavior of Additively Manufactured Casing with Optimized Lattice Structure, Addit. Manuf., 2018, 22, p 462–471. https://doi.org/10.1016/j.addma.2018.05.021

    Article  Google Scholar 

  7. J. Niu, Y. Sui, Q. Yu, X. Cao, and Y. Yuan, Numerical Study on the Impact of Mach Number on the Coupling Effect of Aerodynamic Heating and Aerodynamic Pressure Caused by a Tube Train, J. Wind Eng. Ind. Aerodyn., 2019, 190, p 100–111. https://doi.org/10.1016/j.jweia.2019.04.001

    Article  Google Scholar 

  8. B. Sundén and J. Fu, Aerodynamic Heating, Heat Transf. Aerosp. Appl., 2017, 27, p 27–44. https://doi.org/10.1016/b978-0-12-809760-1.00003-x

    Article  Google Scholar 

  9. Y. Takahashi and K. Yamada, Aerodynamic Heating of Inflatable Aeroshell in Orbital Reentry, Acta Astronaut., 2018, 152, p 437–448. https://doi.org/10.1016/j.actaastro.2018.08.003

    Article  Google Scholar 

  10. H. Alsalla, L. Hao, and C. Smith, Fracture Toughness and Tensile Strength of 316L Stainless Steel Cellular Lattice Structures Manufactured Using the Selective Laser Melting Technique, Mater. Sci. Eng. A, 2016, 669, p 1–6. https://doi.org/10.1016/j.msea.2016.05.075

    Article  CAS  Google Scholar 

  11. T. Pereira, J.V. Kennedy, and J. Potgieter, A Comparison of Traditional Manufacturing vs Additive Manufacturing, the Best Method for the Job, Proc. Manuf., 2019, 30, p 11–18. https://doi.org/10.1016/j.promfg.2019.02.003

    Article  Google Scholar 

  12. M. Sharma, H. Dobbelstein, M. Thiele, and A. Ostendorf, Laser Metal Deposition of Lattice Structures by Columnar Built-Up, Proc. CIRP, 2018, 74, p 218–221. https://doi.org/10.1016/j.procir.2018.08.098

    Article  Google Scholar 

  13. D. Reitemeyer, V. Schultz, F. Syassen, T. Seefeld, and F. Vollertsen, Laser Welding of Large Scale Stainless Steel Aircraft Structures, Phys. Proc., 2013, 41, p 106–111. https://doi.org/10.1016/j.phpro.2013.03.057

    Article  Google Scholar 

  14. R. Wonneberger, M. Seyring, K. Freiberg, A. Carlsson, J. Rensberg, B. Abendroth, and A. Undisz, Oxidation of Stainless Steel 316L—Oxide Grains with Pronounced Inhomogeneous Composition, Corros. Sci., 2019, 149, p 178–184. https://doi.org/10.1016/j.corsci.2018.12.035

    Article  CAS  Google Scholar 

  15. Metallurgy of Mo in Stainless Steel (2009). https://www.imoa.info/molybdenum-uses/molybdenum-grade-stainless-steels/metallurgy-of-molybdenum-in-stainless-steel.php#:~:text=Molybdenum%20adds%20corrosion%20resistance%20and,resistant%20than%20molybdenum%2Dfree%20grades

  16. C. Barile, C. Casavola, S.L. Campanelli, and G. Renna, Analysis of Corrosion on Sintered Stainless Steel: Mechanical and Physical Aspects, Eng. Fail. Anal., 2019, 95, p 273–282. https://doi.org/10.1016/j.engfailanal.2018.09.032

    Article  CAS  Google Scholar 

  17. Z. Wu, Z. Cheng, H. Zhang et al., Electrochemical and Tribological Properties of CrAlN, TiAlN, CrTiN Coatings in Water-Based Cutting Fluid, J. Mater. Eng. Perform., 2020, 29, p 2153–2163. https://doi.org/10.1007/s11665-020-04772-3

    Article  CAS  Google Scholar 

  18. Y.P. Feng, L. Zhang, R.X. Ke, Q.L. Wan, Z. Wang, and Z.H. Lu, Thermal Stability and Oxidation Behavior of AlTiN, AlCrN and AlCrSiWN Coatings, Int. J. Refract. Met. Hard Mater., 2014, 43, p 241–249. https://doi.org/10.1016/j.ijrmhm.2013.11.018

    Article  CAS  Google Scholar 

  19. Y.J. Yin, J.Q. Sun, J. Guo, X.F. Kan, and D.C. Yang, Mechanism of High Yield Strength and Yield Ratio of 316L Stainless Steel by Additive Manufacturing, Mater. Sci. Eng. A, 2019, 744, p 773–777. https://doi.org/10.1016/j.msea.2018.12.092

    Article  CAS  Google Scholar 

  20. M. Attaran, The Rise of 3-D Printing: The Advantages of Additive Manufacturing over Traditional Manufacturing, Bus. Horiz., 2017, 60, p 677–688. https://doi.org/10.1016/j.bushor.2017.05.011

    Article  Google Scholar 

  21. B. Sun and L. Kulinsky, Fabrication of Regular Polystyrene Foam Structures with Selective Laser Sintering, Mater. Today Commun., 2017, 13, p 346–353. https://doi.org/10.1016/j.mtcomm.2017.10.016

    Article  CAS  Google Scholar 

  22. F.H. Liu, R.T. Lee, W.H. Lin, and Y.S. Liao, Selective Laser Sintering of Bio-Metal Scaffold, Proc. CIRP, 2013, 5, p 83–87. https://doi.org/10.1016/j.procir.2013.01.017

    Article  Google Scholar 

  23. C. Nouveaua, C. Labidi, R. Collet, Y. Benlatreche, and M.A. Djouadi, Effect of Surface Finishing such as Sand-Blasting and CrAlN Hard Coatings on the Cutting Edge’s Peeling Tools’ Wear Resistance, Wear, 2009, 267, p 1062–1067. https://doi.org/10.1016/j.wear.2009.01.045

    Article  CAS  Google Scholar 

  24. A. Al-Rifaie, Z.W. Guan, S.W. Jones, and Q. Wang, Lateral Impact Response of End-Plate Beam-Column Connections, Eng. Struct., 2017, 151, p 221–234. https://doi.org/10.1016/j.engstruct.2017.08.026

    Article  Google Scholar 

  25. T. Miura, K. Fujii, K. Fukuya, M. Ando, and H. Tanigawa, Micro-tensile Testing of Reduced-Activation Ferritic Steel F82H Irradiated with Fe and He Ions, Nucl. Mater. Energy, 2018, 17, p 24–28. https://doi.org/10.1016/j.nme.2018.08.004

    Article  Google Scholar 

  26. R.A.W. Mines, S. Tsopanos, Y. Shen, R. Hasan, and S.T. McKown, Drop Weight Impact Behaviour of Sandwich Panels with Metallic Micro Lattice Cores, Int. J. Impact Eng., 2013, 60, p 120–132. https://doi.org/10.1016/j.ijimpeng.2013.04.007

    Article  Google Scholar 

  27. A. Solé, L. Miró, C. Barreneche, I. Martorell, and L.F. Cabeza, Corrosion Test of Salt Hydrates and Vessel Metals for Thermochemical Energy Storage, Energy Proc., 2014, 48, p 431–435. https://doi.org/10.1016/j.egypro.2014.02.050

    Article  CAS  Google Scholar 

  28. M. Belgacem, B. Thierry, and G. Jean-Claude, Investigations on Thermal Debinding Process for Fine 316L Stainless Steel Feedstocks and Identification of Kinetic Parameters from Coupling Experiments and Finite Element Simulations, Powder Technol., 2013, 235, p 192–202. https://doi.org/10.1016/j.powtec.2012.10.006

    Article  CAS  Google Scholar 

  29. J.H. Lee and Y.S. Kim, Intergranular Corrosion of 316L Stainless Steel by Aging and UNSM (Ultrasonic Nano-Crystal Surface Modification), Corros. Sci. Technol., 2015, 14, p 313–324. https://doi.org/10.14773/cst.2015.14.6.313

    Article  CAS  Google Scholar 

  30. Stainless Steel-Grade 316L-Properties, Fabrication and Application (UNS S31603) (2004). https://www.azom.com/article.aspx?ArticleID=2382

  31. C. Auvray, N. Lafrance, and D. Bartier, Elastic Modulus of Claystone Evaluated by Nano-/Micro-Indentation Tests and Meso-Compression Tests, J. Rock Mech. Geotech. Eng., 2017, 9, p 84–91. https://doi.org/10.1016/j.jrmge.2016.02.002

    Article  Google Scholar 

  32. D. Sameer Kumar, K.N.S. Suman, C. Tara Sasanka, K. Ravindra, P. Poddar, and S.B. Venkata Siva, Microstructure, Mechanical Response and Fractography of AZ91E/Al2O3 (p) Nano Composite Fabricated by Semi Solid Stir Casting Method, J. Magnes. Alloys, 2017, 5(1), p 48–55. https://doi.org/10.1016/j.jma.2016.11.006

    Article  CAS  Google Scholar 

  33. F. Zhang, J. Liu, X. Ding, and R. Wang, Experimental and Finite Element Analyses of Contact Behaviors Between Non-transparent Rough Surfaces, J. Mech. Phys. Solids, 2019, 126, p 87–100. https://doi.org/10.1016/j.jmps.2019.02.004

    Article  CAS  Google Scholar 

  34. N. Küsters and A. Brosius, Damage Characterization on Heterogeneous Tensile Tests, Proc. Manuf., 2019, 29, p 458–463. https://doi.org/10.1016/j.promfg.2019.02.162

    Article  Google Scholar 

Download references

Acknowledgments

The authors wish to thank the Center for Technology Development and Transfer (CTDT), Anna University (Proceeding number 347/CTDT-1/RSS SIP/2018), for providing financial assistance for the project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sangeetha Dharmalingam.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ravikumar, D.K., Ragavan, S. & Dharmalingam, S. Analysis of Mechanical and Thermal Properties of Aluminum-Chromium-Nitride-Coated Stainless Steel 316L Micrometal Lattice Fabricated by Selective Laser Sintering. J. of Materi Eng and Perform 29, 7396–7407 (2020). https://doi.org/10.1007/s11665-020-05171-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-020-05171-4

Keywords

Navigation