Skip to main content
Log in

Effect of Cryogenics-Assisted Low-Plasticity Burnishing on Laser-Clad Stellite 6 over SS420 Substrate

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

The influence of modern additive manufacturing methods, especially from the direct energy deposition (DED) processes to the coat-like finished components, is crucial under present industrial circumstances. DED induces several traits like enhanced mechanical, thermal properties in shorter lead time, which extend their adaptation for diverse applications including aerospace and automobile industries. Among the several DED processes, laser cladding has been a prospect that explores various capabilities of improving the wear resistance of cobalt-chromium (Co-Cr)-based alloys. Rather than fabricating the complete component using expensive alloys, laser cladding has paved an approach to deposit particles possessing superior qualities over the conventional material. This research work attempts to evaluate the surface integrity of SS420 when cladded with Stellite 6. The vertical face milling is executed on the cladded component surface to facilitate either low-plasticity burnishing (LPB) or cryogenic burnishing (CB) as sequential post-treatment processes. The effects of these post-treatments on the surface and subsurface microhardness, surface topography and residual stress profiles are elaborated. Increased surface and subsurface microhardness, as well as improved residual stress profiles, are observed with CB over LPB-processed specimen samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Y. Birol, High Temperature Sliding Wear Behaviour of Inconel 617 and Stellite 6 Alloys, Wear, 2010, 269(9–10), p 664–671

    Article  CAS  Google Scholar 

  2. V. Kuzucu, M. Ceylan, H. Celik, and I. Aksoy, Microstructure and Phase Analyses of Stellite 6 Plus 6 wt% Mo Alloy, J. Mater. Process. Technol., 1997, 69(1–3), p 257–263

    Article  Google Scholar 

  3. M. Zhong, W. Liu, K. Yao, J.C. Goussain, C. Mayer, and A. Becker, Microstructural Evolution in High Power Laser Cladding of Stellite 6 + WC Layers, Surf. Coat. Technol., 2002, 157(2–3), p 128–137

    Article  CAS  Google Scholar 

  4. A. Frenk and W. Kurz, Microstructural Effects on the Sliding Wear Resistance of a Cobalt-Based Alloy, Wear, 1994, 174(1–2), p 81–91

    Article  CAS  Google Scholar 

  5. R.A. Jeshvaghani, M. Shamanian, and M. Jaberzadeh, Enhancement of Wear Resistance of Ductile Iron Surface Alloyed by Stellite 6, Mater. Des., 2011, 32(4), p 2028–2033

    Article  Google Scholar 

  6. J.C. Shin, J.M. Doh, J.K. Yoon, D.Y. Lee, and J.S. Kim, Effect of Molybdenum on the Microstructure and Wear Resistance of Cobalt-Base Stellite Hardfacing Alloys, Surf. Coat. Technol., 2003, 166(2–3), p 117–126

    Article  CAS  Google Scholar 

  7. D. Bartkowski and G. Kinal, Microstructure and Wear Resistance of Stellite-6/WC MMC Coatings Produced by Laser Cladding Using Yb: YAG Disk Laser, Int. J. Refract. Met. Hard. Mater., 2016, 58, p 157–164

    Article  CAS  Google Scholar 

  8. A.S. D’Oliveira, P.S. da Silva, and R.M. Vilar, Microstructural Features of Consecutive Layers of Stellite 6 Deposited by Laser Cladding, Surf. Coat. Technol., 2002, 153(2–3), p 203–209

    Article  Google Scholar 

  9. S. Sun, Y. Durandet, and M. Brandt, Parametric Investigation of Pulsed Nd: YAG Laser Cladding of Stellite 6 on Stainless Steel, Surf. Coat. Technol., 2005, 194(2–3), p 225–231

    Article  CAS  Google Scholar 

  10. A. Gholipour, M. Shamanian, and F. Ashrafizadeh, Microstructure and Wear Behavior of Stellite 6 Cladding on 17-4 PH Stainless Steel, J. Alloys Compd., 2011, 509(14), p 4905–4909

    Article  CAS  Google Scholar 

  11. D. Gupta, B.L. Mordike, S. Shariff, G. Padmanabhan, I. Manna, and J.D. Majumdar, Laser Surface Cladding of EN19 Steel with Stellite 6 for Improved Wear Resistance, Interface, 2009, 2, p 4

    Google Scholar 

  12. G. Xu, M. Kutsuna, and M. Rathod, Cladding of Stellite-6 and Vanadium Carbide on Carbon Steel Using a Yttrium-Aluminum-Garnet Laser Robot System, J. Laser Appl., 2006, 18(1), p 47–55

    Article  CAS  Google Scholar 

  13. A. Kusmoko, D.P. Dunne, H.J. Li. Measuring Dilution and Wear for Laser Cladding of Stellite 6 Produced on a P91 Steel Substrate Using Two Different Heat Inputs. MATEC Web of Conferences, V17, 2016.

  14. A. Plati, J.C. Tan, I.O. Golosnoy, R. Persoons, K. Van Acker, and T.W. Clyne, Residual Stress Generation during Laser Cladding of Steel with a Particulate Metal Matrix Composite, Adv. Eng. Mater., 2006, 8(7), p 619–624

    Article  CAS  Google Scholar 

  15. Y.T. Pei and J.T. De Hosson, Functionally Graded Materials Produced by Laser Cladding, Acta Mater., 2000, 48(10), p 2617–2624

    Article  CAS  Google Scholar 

  16. I.S. Jawahir, E. Brinksmeier, R. M’saoubi, D.K. Aspinwall, J.C. Outeiro, D. Meyer, D. Umbrello, and A.D. Jayal, Surface Integrity in Material Removal Processes: Recent Advances, CIRP Ann., 2011, 60(2), p 603–626

    Article  Google Scholar 

  17. O. Pereira, A. Rodríguez, A.I. Fernández-Abia, J. Barreiro, and L.L. de Lacalle, Cryogenic and Minimum Quantity Lubrication for an Eco-Efficiency Turning of AISI, 304, J. Clean. Prod., 2016, 139, p 440–449

    Article  CAS  Google Scholar 

  18. O. Pereira, A. Rodríguez, A. Fernández-Valdivielso, J. Barreiro, A.I. Fernández-Abia, and L.N. López-De-Lacalle, Cryogenic Hard Turning of ASP23 Steel Using Carbon Dioxide, Proc. Eng., 2015, 132, p 486–491

    Article  CAS  Google Scholar 

  19. S. Thamizhmnaii, B.B. Omar, S. Saparudin, and S. Hasan, Surface Roughness Investigation and Hardness by Burnishing on Titanium Alloy, J. Achiev. Mater. Manuf. Eng., 2008, 28(2), p 139–142

    Google Scholar 

  20. A.M. Hassan and A.S. Al-Bsharat, Influence of Burnishing Process on Surface Roughness, Hardness, and Microstructure of Some Non-Ferrous Metals, Wear, 1996, 199(1), p 1–8

    Article  CAS  Google Scholar 

  21. A. Rodríguez, A. Calleja, L.N. López de Lacalle, O. Pereira, H. González, G. Urbikain, and J. Laye, Burnishing of FSW Aluminum Al-Cu-Li Components, Metals, 2019, 9(2), p 260

    Article  Google Scholar 

  22. U. Shirsat, B. Ahuja, and M. Dhuttargaon, Effect of Burnishing Parameters on Surface Finish, J. Inst. Eng. (India) Ser. C, 2017, 98(4), p 431–436

    Article  Google Scholar 

  23. C. Courbon, A. Sova, F. Valiorgue, H. Pascal, J. Sijobert, G. Kermouche, P. Bertrand, and J. Rech, Near Surface Transformations of Stainless Steel Cold Spray and Laser Cladding Deposits After Turning and Ball-Burnishing, Surf. Coat. Technol., 2019, 371, p 235–244

    Article  CAS  Google Scholar 

  24. J. Radziejewska, Application of laser-burnishing treatment for improvement of surface layer properties, CO2 Laser-Optimisation and Application, D.C. Dumitras, Ed., INTECH, Croatia, 2012, p 251–274

    Google Scholar 

  25. M. Praniewicz, T. Feldhausen, S. Kersten, J. Berez, E. Jost, T. Kurfess, C. Saldana. Integrated Hardfacing of Stellite-6 Using Hybrid Manufacturing Process. In Solid Freeform Fabrication 2019: Proceedings of the 30th Annual International Solid Freeform Fabrication SymposiumAn Additive Manufacturing Conference, 2019.

  26. H. Gedda. Laser cladding: an experimental and theoretical investigation (Doctoral dissertation, Luleå tekniska universitet). 2004.

  27. J. Caudill, B. Huang, C. Arvin, J. Schoop, K. Meyer, and I.S. Jawahir, Enhancing the Surface Integrity of Ti-6Al-4 V Alloy Through Cryogenic Burnishing, Proc. CIRP, 2014, 13, p 243–248

    Article  Google Scholar 

  28. J. Ju, Y. Zhou, M. Kang, and J. Wang, Optimization of Process Parameters, Microstructure, and Properties of Laser Cladding Fe Based Alloy on 42CrMo Steel Roller, Materials, 2018, 11(10), p 2061

    Article  Google Scholar 

  29. P. Zhang and Z. Liu, Effect of Sequential Turning and Burnishing on the Surface Integrity of Cr-Ni-Based Stainless Steel Formed by Laser Cladding Process, Surf. Coat. Technol., 2015, 276, p 327–335

    Article  CAS  Google Scholar 

  30. B. Sachin, S. Narendranath, and D. Chakradhar, Effect of Cryogenic Diamond Burnishing on Residual Stress and Microhardness of 17-4 PH Stainless Steel, Mater. Today Proc., 2018, 5(9), p 18393–18399

    Article  CAS  Google Scholar 

  31. L.N. Zhu, B.S. Xu, H.D. Wang, and C.B. Wang, Microstructure and Nanoindentation Measurement of Residual Stress in Fe-Based Coating by Laser Cladding, J. Mater. Sci., 2012, 47, p 2122–2126

    Article  CAS  Google Scholar 

  32. M. Nasr, E.G. Ng, and M. Elbestawi, Effects of Workpiece Thermal Properties on Machining-Induced Residual Stresses-Thermal Softening and Conductivity, Proc. Inst. Mech. Eng. Part B J. Eng. Manuf., 2007, 221(9), p 1387–1400

    Article  Google Scholar 

  33. M.E. Aldrine, N.M. Babu, and S.A. Kumar, Evaluation of Induced Residual Stresses Due to Low Plasticity Burnishing Through Finite Element Simulation, Mater. Today Proc., 2017, 4(10), p 10850–10857

    Article  Google Scholar 

  34. B. Huang, Y.U. Kaynak, Y. Sun, and I.S. Jawahir, Surface Layer Modification by Cryogenic Burnishing of Al 7050-T7451 Alloy and Validation with FEM-Based Burnishing Model, Proc. CIRP, 2015, 31, p 1–6

    Article  CAS  Google Scholar 

  35. W.C. Lin and C. Chen, Characteristics of Thin Surface Layers of Cobalt-Based Alloys Deposited by Laser Cladding, Surf. Coat. Technol., 2006, 200(14–15), p 4557–4563

    Article  CAS  Google Scholar 

  36. G. Wang, J. Zhang, R. Shu, and S. Yang, High Temperature Wear Resistance and Thermal Fatigue Behavior of Stellite-6/WC Coatings Produced by Laser Cladding with Co-coated WC Powder, Int. J. Refract. Met. Hard. Mater., 2019, 81, p 63–70

    Article  Google Scholar 

Download references

Acknowledgment

The authors are thankful to Arcelormittal Neel Tailored Blanks Pvt. Ltd (ANTB), Chennai, for sharing their laser cladding facility during the execution of this research work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. S. S. Balan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Anirudh, P.V., Kumar, B., Girish, G. et al. Effect of Cryogenics-Assisted Low-Plasticity Burnishing on Laser-Clad Stellite 6 over SS420 Substrate. J. of Materi Eng and Perform 29, 6861–6869 (2020). https://doi.org/10.1007/s11665-020-05152-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-020-05152-7

Keywords

Navigation