Skip to main content
Log in

Study of Influence of Superimposed Hydrostatic Pressure on Ductility in Ring Compression Test

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

The effects of superimposed hydrostatic pressure on the ductility of compressed rings are investigated numerically by using the finite element method and employing the Johnson–Cook (JC) model. The ductility and fracture strain increase considerably by imposing hydrostatic pressure, which delays the initiation of cracks at the corners of the rings. Furthermore, the sensitivity of the ductile fracture parameters in the JC model on compressibility and crack initiation is considered. The effect of the shape factor on fracture in compressed rings under hydrostatic pressure is also investigated, and the predicted fracture strains are compared. Results show that fracture strain increases linearly with hydrostatic pressure regardless of the geometry of the rings. However, the initial value of fracture strain is small for tall rings. The numerical results are found to be in good agreement with experimental observations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. M. Kunogi, On the Plastic Deformation of the Hollow Cylinder Under Axial Load, J. Sci. Res. Inst., 1954, 30(2), p 63–92

    Google Scholar 

  2. A.T. Male and M.G. Cockcroft, A Method for the Determination of the Coefficient of Friction of Metals under Conditions of Bulk Plastic Deformation, J. Inst. Met., 1964–65, 93, p 38–46

  3. B. Avitzur, Forging of Hollow Discs, Israel J. Technol., 1964, 2(3), p 295–304

    Google Scholar 

  4. M.N. Janardhana and S.K. Biswas, Modes of Deformation in Aluminium Rings Subjected to Static Axial Compression, Int. J. Mech. Sci., 1979, 21(12), p 699–712

    Article  Google Scholar 

  5. P. Hartley, C.E. Sturgess, A. Lees, and G.W. Rowe, The Static Axial Compression of Tall Hollow Cylinders with High Interfacial Friction, Int. J. Mech. Sci., 1981, 23(8), p 473–485

    Article  Google Scholar 

  6. W.L. Chan, W.M. Fu, and J. Lu, The Size Effect on Micro Deformation Behaviour in Micro-scale Plastic Deformation, Mater. Des., 2011, 32(1), p 198–206

    Article  CAS  Google Scholar 

  7. S.J. Mirahmadi, M. Hamedi, and M. Cheraghzadeh, Investigating Friction Factor in Forging of Ti-6Al-4V Through Isothermal Ring Compression Test, Tribol. Trans., 2015, 58(5), p 778–785

    Article  CAS  Google Scholar 

  8. K.J. Fann and C.C. Chen, Grain Size in Aluminum Alloy 6061 under Hot Ring Compression Test and After T6 Temper, Appl. Sci., 2017, 7(4), p 372–390

    Article  Google Scholar 

  9. K.P. Rao and K. Sivaram, A Review of Ring-Compression Testing and applicability of the Calibration Curves, J. Mater. Process. Technol., 1993, 37, p 295–318

    Article  Google Scholar 

  10. M.M. Shahzamanian, D.J. Lloyd, and P.D. Wu, Enhanced Bendability in Sheet Metals Produced by Cladding a Ductile Layer, Mater. Today Commun. J., 2020, 23, p 100952

    Article  CAS  Google Scholar 

  11. J.J. Lewandowski and P. Lowhaphandu, Effects of Hydrostatic Pressure on Mechanical Behaviour and Deformation Processing of Materials, Int. Mater. Rev., 1998, 43(4), p 145–187

    Article  CAS  Google Scholar 

  12. W.F. Hosford and R.M. Caddell, Metal Forming: Mechanics and Metallurgy, Cambridge University Press, Cambridge, 2011

    Book  Google Scholar 

  13. A. Ghorbani, A. Zarei-Hanzaki, P.D. Nezhadfar, and M.H. Maghsoudi, Microstructural Evolution and Room Temperature Mechanical Properties of AZ31 Alloy Processed Through Hot Constrained Compression, Int. J. Adv. Manuf. Technol., 2019, 102(5–8), p 2307–2317

    Article  Google Scholar 

  14. W.D. Callister and D.G. Rethwisch, Materials Science and Engineering: An Introduction, Vol 7, Wiley, New York, 2007

    Google Scholar 

  15. F.A. McClintock, A Criterion for Ductile Fracture by the Growth of Holes, J. Appl. Mech., 1968, 35(2), p 363–371

    Article  Google Scholar 

  16. J.R. Rice and D.M. Tracey, On the Ductile Enlargement of Voids in Triaxial Stress Fields, J. Mech. Phys. Solids, 1969, 17(3), p 201–217

    Article  Google Scholar 

  17. Y. Bao and T. Wierzbicki, On Fracture Locus in the Equivalent Strain and Stress Triaxiality Space, Int. J. Mech. Sci., 2004, 46(1), p 81–98

    Article  Google Scholar 

  18. Y. Bao and T. Wierzbicki, A Comparative Study on Various Ductile Crack Formation Criteria, J. Mater. Technol., 2004, 126, p 314–324

    Article  CAS  Google Scholar 

  19. T. Wierzbicki, Y. Bao, Y.W. Lee, and Y. Bai, Calibration and Evaluation of Seven Fracture Models, Int. J. Mech. Sci., 2005, 47(4–5), p 719–743

    Article  Google Scholar 

  20. J. Papasidero, V. Doquet, and D. Mohr, Ductile Fracture of Aluminum 2024–T351 under Proportional and Non-proportional Multi-axial Loading: Bao-Wierzbicki Results Revisited, Int. J. Solids Struct., 2015, 69, p 459–474

    Article  Google Scholar 

  21. P. Kubík, F. Šebek, J. Hůlka, and J. Petruška, Calibration of Ductile Fracture Criteria at Negative Stress Triaxiality, Int. J. Mech. Sci., 2016, 108, p 90–103

    Article  Google Scholar 

  22. P.D. Wu, J.D. Embury, D.J. Lloyd, Y. Huang, and K.W. Neale, Effects of Superimposed Hydrostatic Pressure on Sheet Metal Formability, Int. J. Plast., 2009, 25(9), p 1711–1725

    Article  CAS  Google Scholar 

  23. A.S. Kao, H.A. Kuhn, O. Richmond, and W.A. Spitzig, Tensile Fracture and Fractographic Analysis of 1045 Spheroidized Steel under Hydrostatic Pressure, J. Mater. Res., 1990, 5(1), p 83–91

    Article  CAS  Google Scholar 

  24. L.I.U. Gang, L.L. Wang, S.J. Yuan, and Z.R. Wang, Compressive Formability of 7075 Aluminum Alloy Rings Under Hydrostatic Pressure, Trans. Nonferrous Met. Soc. China, 2006, 16(5), p 1103–1109

    Article  Google Scholar 

  25. N.S. Brar, V.S. Joshi, and B.W. Harris, Constitutive model constants for Al7075‐T651 and Al7075‐T6. In Aip Conference Proceedings (Vol. 1195, No. 1, pp. 945–948). AIP (2009)

  26. M. Murugesan and D.W. Jung, Johnson Cook Material and Failure Model Parameters Estimation of AISI-1045 Medium Carbon Steel for Metal Forming Applications, Materials, 2019, 12(4), p 609

    Article  CAS  Google Scholar 

  27. K. Wang, Calibration of the Johnson–Cook Failure Parameters as the Chip Separation Criterion in the Modelling of the Orthogonal Metal Cutting Process (Master’s dissertation) (2016)

  28. M.P. Groover, Fundamentals of Modern Manufacturing: Materials Processes, and Systems, Wiley, New York, 2012

    Google Scholar 

  29. H. Sofuoglu and J. Rasty, On the Measurement of Friction Coefficient Utilizing the Ring Compression Test, Tribol. Int., 1999, 32(6), p 327–335

    Article  Google Scholar 

  30. X.G. Fan, Y.D. Dong, H. Yang, P.F. Gao, and M. Zhan, Friction Assessment in Uniaxial Compression Test: A New Evaluation Method Based on Local Bulge Profile, J. Mater. Process. Technol., 2017, 243, p 282–290

    Article  Google Scholar 

  31. M. Dunand and D. Mohr, Effect of Lode Parameter on Plastic Flow Localization after Proportional Loading at Low Stress Triaxialities, J. Mech. Phys. Solids, 2014, 66, p 133–153

    Article  Google Scholar 

  32. G.R. Johnson and W.H. Cook, A Constitutive Model and Data for Metals Subjected to Large Strains, High Strain Rates, and High temperatUres. Proceedings of 7th International Symposium on Ballistics, Hague, Netherlands, April 1983, p 541–548

  33. D. Systèmes, Simulation of the Ballistic Perforation of Aluminium Plates with Abaqus/Explicit. Abaqus Technology Brief (2012)

  34. D.R. Lesuer, G.J. Kay, and M.M. LeBlanc, Modeling Large-Strain, High-Rate deformation in Metals (No. UCRL-JC-134118). Lawrence Livermore National Lab., CA (US) (2001)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amir Partovi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Partovi, A., Shahzamanian, M.M. & Wu, P.D. Study of Influence of Superimposed Hydrostatic Pressure on Ductility in Ring Compression Test. J. of Materi Eng and Perform 29, 6581–6590 (2020). https://doi.org/10.1007/s11665-020-05114-z

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-020-05114-z

Keywords

Navigation