Skip to main content

Advertisement

Log in

Influence of Soybean Hull Fiber Concentration on the Water Absorption and Mechanical Properties of 3D-Printed Thermoplastic Copolyester/Soybean Hull Fiber Composites

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

In this work, fused filament fabrication 3D-printed parts of soybean hull fiber thermoplastic copolyester (TPC) composites with soybean hull fiber concentrations of 0-35 wt.% were tested to understand the influence of mechanical properties and moisture sensitivity on the soybean hull fiber concentration. The composites were analyzed for their microstructures and mechanical properties in as-printed condition and after immersion in deionized water for 168 h. The printed parts with ≥ 25 wt.% soybean hull fiber were found to have more porosity (9-12%) leading to high rate of water absorption with a maximum weight gain of ~ 8% and up to 4% volumetric swelling. However, in the as-printed condition, these composites exhibited significantly higher elastic modulus of 80 ± 3 MPa than pure TPC (36 ± 3 MPa) and their strength improved by 40%. The toughness of the composites decreased below that of pure TPC when the fiber concentration was 35 wt.% due to significant drop in the elongation. The composites with ≤ 15 wt.% soybean hull fiber showed marginal drop in the mechanical properties due to water absorption. Additionally, the microstructural analysis showed good fiber–matrix interfacial characteristics in as-printed condition, which were damaged due to moisture absorption in addition to defragmentation of fiber bundles. Interestingly, the toughness of TPC–soybean hull fiber composites was immune to water absorption and the deleterious effect of moisture on the mechanical appears to be partly reversible after drying the composites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Grand View Research, “Natural Fiber Composites (NFC) Market Size, Share & Trends Analysis Report By Raw Material, By Matrix, By Technology (Injection Molding, Compression Molding, Pultrusion), By Application, And Segment Forecasts, 2018–2024,” n.d., https://www.grandviewresearch.com/industry-analysis/natural-fiber-composites-market.

  2. V.K. Balla, K.H. Kate, J. Satyavolu, P. Singh, and J.G. Dattatreya Tadimeti, Additive Manufacturing of Natural Fiber Reinforced Polymer Composites: Processing and Prospects, Compos. Part B Eng., 2019, https://doi.org/10.1016/j.compositesb.2019.106956

    Article  Google Scholar 

  3. A.K. Mohanty, M. Misra, and G. Hinrichsen, Biofibres, Biodegradable Polymers and Biocomposites: An Overview, Macromol. Mater. Eng., 2000, 276-277, p 1–24

    Article  Google Scholar 

  4. K. Tak Lau, P. Yan Hung, M.H. Zhu, and D. Hui, Properties of Natural Fibre Composites for Structural Engineering Applications, Compos. Part B Eng., 2018, 136, p 222–233

    Article  Google Scholar 

  5. G. Koronis, A. Silva, and M. Fontul, Green Composites: A Review of Adequate Materials for Automotive Applications, Compos. Part B Eng., 2013, 44(1), p 120–127

    Article  CAS  Google Scholar 

  6. J. Summerscales, N.P.J. Dissanayake, A.S. Virk, and W. Hall, A Review of Bast Fibers and Their Composites. Part 1-Fibers as Reinforcements, Compos. Part A, 2010, 41(10), p 1329–1335

    Article  Google Scholar 

  7. K.L. Pickering, M.G.A. Efendy, and T.M. Le, A Review of Recent Developments in Natural Fibre Composites and Their Mechanical Performance, Compos. Part A Appl. Sci. Manuf., 2016, 83, p 98–112

    Article  CAS  Google Scholar 

  8. F.Z. Arrakhiz, M. El Achaby, M. Malha, M.O. Bensalah, O. Fassi-Fehri, R. Bouhfid, K. Benmoussa, and A. Qaiss, Mechanical and Thermal Properties of Natural Fibers Reinforced Polymer Composites: Doum/Low Density Polyethylene, Mater. Des., 2013, 43, p 200–205

    Article  CAS  Google Scholar 

  9. N. Venkateshwaran, A. Elaya Perumal, and D. Arunsundaranayagam, Fiber Surface Treatment and Its Effect on Mechanical and Visco-Elastic Behaviour of Banana/Epoxy Composite, Mater. Des., 2013, 47, p 151–159

    Article  CAS  Google Scholar 

  10. S.S. Mir, N. Nafsin, M. Hasan, N. Hasan, and A. Hassan, Improvement of Physico-Mechanical Properties of Coir-Polypropylene Biocomposites by Fiber Chemical Treatment, Mater. Des., 2013, 52, p 251–257

    Article  CAS  Google Scholar 

  11. I. Van de Weyenberg, J. Ivens, A. De Coster, B. Kino, E. Baetens, and I. Verpoest, Influence of Processing and Chemical Treatment of Flax Fibres on Their Composites, Compos. Sci. Technol., 2003, 63(9), p 1241–1246

    Article  Google Scholar 

  12. H.U. Zaman and M.D.H. Beg, Preparation, Structure, and Properties of the Coir Fiber/Polypropylene Composites, J. Compos. Mater., 2014, 48(26), p 3293–3301

    Article  Google Scholar 

  13. S. Alix, L. Colasse, C. Morvan, L. Lebrun, and S. Marais, Pressure Impact of Autoclave Treatment on Water Sorption and Pectin Composition of Flax Cellulosic-Fibres, Carbohydr. Polym., 2014, 102, p 21–29

    Article  CAS  Google Scholar 

  14. H.U. Zaman, M.A. Khan, and R.A. Khan, Improvement of Mechanical Properties of Jute Fibers-Polyethylene/Polypropylene Composites: Effect of Green Dye and UV Radiation, Polym. Plast. Technol. Eng., 2009, 48(11), p 1130–1138

    Article  CAS  Google Scholar 

  15. M. Sarikanat, Y. Seki, and K. Sever, The Effect of Argon and Air Plasma Treatment of Flax Fiber on Mechanical Properties of Reinforced Polyester Composite, J. Ind. Text., 2016, 45(6), p 1252–1267

    Article  CAS  Google Scholar 

  16. T. Gurunathan, S. Mohanty, and S.K. Nayak, A Review of the Recent Developments in Biocomposites Based on Natural Fibres and Their Application Perspectives, Compos. Part A Appl. Sci. Manuf., 2015, 77, p 1–25

    Article  CAS  Google Scholar 

  17. A. Le Duigou, M. Castro, R. Bevan, and N. Martin, 3D Printing of Wood Fibre Biocomposites: From Mechanical to Actuation Functionality, Mater. Des., 2016, 96, p 106–114

    Article  Google Scholar 

  18. S.A. Hinchcliffe, K.M. Hess, and W.V. Srubar, Experimental and Theoretical Investigation of Prestressed Natural Fiber-Reinforced Polylactic Acid (PLA) Composite Materials, Compos. Part B Eng., 2016, 95, p 346–354. https://doi.org/10.1016/j.compositesb.2016.03.089

    Article  CAS  Google Scholar 

  19. D. Bourell, J.P. Kruth, M. Leu, G. Levy, D. Rosen, A.M. Beese, and A. Clare, Materials for Additive Manufacturing, CIRP Ann. Manuf. Technol., 2017, 66, p 659–681

    Article  Google Scholar 

  20. P. Parandoush and D. Lin, A Review on Additive Manufacturing of Polymer-Fiber Composites, Compos. Struct., 2017, 182, p 36–53

    Article  Google Scholar 

  21. D.A. Fonseca, R. Lupitskyy, D. Timmons, M. Gupta, and J. Satyavolu, Towards Integrated Biorefinery from Dried Distillers Grains: Selective Extraction of Pentoses Using Dilute Acid Hydrolysis, Biomass and Bioenergy, Pergamon, 2014, 71, p 178–186. https://doi.org/10.1016/J.BIOMBIOE.2014.10.008

    Article  CAS  Google Scholar 

  22. S.N. Maiti, R. Subbarao, and M.N. Ibrahim, Effect of Wood Fibers on the Rheological Properties of I-PP/Wood Fiber Composites, J. Appl. Polym. Sci., 2004, 91(1), p 644–650. https://doi.org/10.1002/app.13157

    Article  CAS  Google Scholar 

  23. M. Kaseem, K. Hamad, F. Deri, and Y.G. Ko, Effect of Wood Fibers on the Rheological and Mechanical Properties of Polystyrene/Wood Composites, J. Wood Chem. Technol., 2017, 37(4), p 251–260. https://doi.org/10.1080/02773813.2016.1272127

    Article  CAS  Google Scholar 

  24. V. Hristov, E. Takács, and J. Vlachopoulos, Surface Tearing and Wall Slip Phenomena in Extrusion of Highly Filled HDPE/Wood Flour Composites, Polym. Eng. Sci., 2006, 46(9), p 1204–1214. https://doi.org/10.1002/pen.20592

    Article  CAS  Google Scholar 

  25. G. Bogoeva-Gaceva, M. Avella, M. Malinconico, A. Buzarovska, A. Grozdanov, G. Gentile, and M.E. Errico, Natural Fiber Eco-composites, Polym. Compos., 2007, 28(1), p 98–107

    Article  CAS  Google Scholar 

  26. S. Shinoj, S. Panigrahi, and R. Visvanathan, Water Absorption Pattern and Dimensional Stability of Oil Palm Fiber-Linear Low Density Polyethylene Composites, J. Appl. Polym. Sci., 2010, 117, p 1064–1075

    Article  CAS  Google Scholar 

  27. N.A. Ibrahim, K.A. Hadithon, and K. Abdan, Effect of Fiber Treatment on Mechanical Properties of Kenaf Fiber-Ecoflex Composites, J. Reinf. Plast. Compos., 2010, 29(14), p 2192–2198

    Article  CAS  Google Scholar 

  28. M.M. Kabir, H. Wang, K.T. Lau, F. Cardona, and T. Aravinthan, Mechanical Properties of Chemically-Treated Hemp Fibre Reinforced Sandwich Composites, Compos. Part B Eng., 2012, 43(2), p 159–169

    Article  CAS  Google Scholar 

  29. M.S. Islam, K.L. Pickering, and N.J. Foreman, Influence of Alkali Treatment on the Interfacial and Physico-Mechanical Properties of Industrial Hemp Fibre Reinforced Polylactic Acid Composites, Compos. Part A Appl. Sci. Manuf., 2010, 41(5), p 596–603

    Article  Google Scholar 

  30. R. Masoodi and K.M. Pillai, A Study on Moisture Absorption and Swelling in Bio-Based Jute-Epoxy Composites, J. Reinf. Plast. Compos., 2012, 31(5), p 285–294. https://doi.org/10.1177/0731684411434654

    Article  CAS  Google Scholar 

  31. T.H. Mokhothu and M.J. John, Bio-Based Coatings for Reducing Water Sorption in Natural Fibre Reinforced Composites, Sci. Rep., 2017, 7(1), p 13335

    Article  CAS  Google Scholar 

  32. R.A. Kakroodi, Y. Kazemi, and D. Rodrigue, Mechanical, Rheological, Morphological and Water Absorption Properties of Maleated Polyethylene/Hemp Composites: Effect of Ground Tire Rubber Addition, Compos. Part B Eng., 2013, 51, p 337–344

    Article  Google Scholar 

  33. W. Wang, M. Sain, and P.A. Cooper, Study of Moisture Absorption in Natural Fiber Plastic Composites, Compos. Sci. Technol., 2006, 66, p 379–386

    Article  CAS  Google Scholar 

  34. S.P. Priyanka, Effect of Water Absorption on Interface and Tensile Properties of Banana Fibre Reinforced Functionalized Polypropylene (BF/CFPP) Composites Developed by Palsule Process, Appl. Polym. Compos., 2013, 1(2), p 103–112

    Google Scholar 

  35. A. Espert, F. Vilaplana, and S. Karlsson, Comparison of Water Absorption in Natural Cellulosic Fibres from Wood and One-Year Crops in Polypropylene Composites and Its Influence on Their Mechanical Properties, Compos. Part A Appl. Sci. Manuf., 2004, 35(11), p 1267–1276

    Article  Google Scholar 

  36. A.C. Karmaker, Effect of Water Absorption on Dimensional Stability and Impact Energy of Jute Fibre Reinforced Polypropylene, J. Mater. Sci. Lett., 1997, 16(6), p 462–464

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by United Soybean Board, MO, USA (Contract No. USB#1940-362-0703-E).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kunal H. Kate.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Balla, V.K., Kate, K.H., Dattatreya Tadimeti, J.G. et al. Influence of Soybean Hull Fiber Concentration on the Water Absorption and Mechanical Properties of 3D-Printed Thermoplastic Copolyester/Soybean Hull Fiber Composites. J. of Materi Eng and Perform 29, 5582–5593 (2020). https://doi.org/10.1007/s11665-020-05021-3

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-020-05021-3

Keywords

Navigation