Skip to main content

Advertisement

Log in

Nano- and Microhardness Distribution in the Carburized Case of Nb-Microalloyed Gear Steel

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

The characteristics of in-depth hardness distribution in the high-temperature carburized case of Nb-microalloyed gear steel before and after cryogenic treatment were studied by nano-indentation method and Vickers hardness method. The results showed that there was no significant difference in Vickers hardness of the carburized case before and after cryogenic treatment, while the nano-hardness of the carburized case was increased after cryogenic treatment. The change of nano-hardness could be related to the decrease in retained austenite content. The retained austenite content in the surface of the carburized case was 26%, which was reduced to 18% after cryogenic treatment at − 196 °C, with the nano-hardness increased from 11.8 to 12.6 GPa. Nano-indentation can be used to reliably measure the properties of the high-temperature carburized case with fine retained austenite for Nb-microalloyed gear steel.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. K. Loeser and G. Schmitt, Increase of productivity in the gear industry by vacuum carburizing and gas quenching, Heat Processing, 2004, 3, p 141–144

    Google Scholar 

  2. O. Asi, A.C. Can, J. Pineault, and M. Belassel, The Effect of High Temperature Gas Carburizing on Bending Fatigue Strength of SAE 8620 Steel, Mater. Des., 2009, 30, p 1792–1797

    Article  CAS  Google Scholar 

  3. T. Kimura and Y. Kurebayashi, Niobium in Microalloy Engineering Steels Wire Rods and Case Carburized Products, in Proceedings of International Symposium Niobium, Orlando, 2001, p 801

  4. K.A. Alogab, D.K. Matlock, J.G. Speer, and H.J. Kleebe, The Influence of Niobium Microalloying on Austenite Grain Coarsening Behavior of Ti Modified SAE 8620 Steel, ISIJ Int., 2007, 47, p 307–316

    Article  CAS  Google Scholar 

  5. Y.H. Yang, M.Q. Wang, J.C. Chen, and H. Dong, Microstructure and Mechanical Properties of Gear Steels after High Temperature Carburization, J. Iron. Steel Res. Int., 2013, 20, p 140–145

    Article  Google Scholar 

  6. M. Sharma, G. Kripak, R. Kohlmann, B. Clausen, U. Prahl, H.W. Zoch, and W. Bleck, Development of an Aluminium-Reduced Niobium-Microalloyed Case Hardening Steel for Heavy Gear Manufacturing, J. Heat Treat. Mater., 2019, 74(1), p 36–49

    Article  Google Scholar 

  7. L. Ma, M.Q. Wang, J. Shi, W.J. Hui, and H. Dong, Influence of Niobium Microalloying on Rotating Bending Fatigue Properties of Case Carburized Steels, Mater. Sci. Eng., A, 2008, 498, p 258–265

    Article  Google Scholar 

  8. Y.H. Yang, M.Q. Wang, J.C. Chen, and H. Dong, Fatigue Performance of Gear Steels After High Temperature Carburizing, J. Iron Steel Res., 2013, 48, p 53–57

    Google Scholar 

  9. R. Ramasamy, S. Sivathanu, V. Neelakandan, T. Ganesan, and P.C. Rao, Influence of Retained Austenite on Fatigue Performance of Carburized Gears. SAE Technical Papers, October 2019. https://doi.org/10.4271/2019-28-0102

  10. S. Roy and S. Sundararajan, Effect of Retained Austenite on Spalling Behavior of Carburized AISI 8620 Steel under Boundary Lubrication, Int. J. Fatigue, 2019, 119, p 238–246

    Article  CAS  Google Scholar 

  11. S. Roy and S. Sundararajan, The Effect of Heat Treatment Routes on the Retained Austenite and Tribomechanical Properties of Carburized AISI, 8620 Steel, Surf. Coat. Technol., 2016, 308, p 236–243

    Article  CAS  Google Scholar 

  12. D. Morris, F. Sadeghi, K. Singh, and R. Voothaluru, Residual Stress Formation and Stability in Bearing Steels Due to Fatigue Induced Retained Austenite Transformation, Int. J. Fatigue, 2020, https://doi.org/10.1016/j.ijfatigue.2020.105610

    Article  Google Scholar 

  13. V. Bedekarl, R. Voothaluru, D. Yu, A. Wong, E. Galindo-Nava, S.B. Gorti, K. An, and R.S. Hydel, Effect of Nickel on the Kinematic Stability of Retained Austenite in Carburized Bearing Steels—In-Situ Neutron Diffraction and Crystal Plasticity Modeling of Uniaxial Tension Tests in AISI 8620, 4320 and 3310 Steels. Int. J. Plast., 2020. https://doi.org/10.1016/j.ijplas.2020.102748

  14. E. Charles, H. Crawford, O.B. Hemantha, and K. Yeddu, Multi-length Scale Modeling of Carburization, Martensitic Microstructure Evolution and Fatigue Properties of Steel Gears, J. Mater. Sci. Technol., 2020, 49, p 157–165

    Article  Google Scholar 

  15. A. Oila and S.J. Bull, Nanoindentation Testing of Gear Steels, Z. F. Metall., 2003, 94, p 793–797

    Article  CAS  Google Scholar 

  16. Y. Liu, M.Q. Wang, W.J. Hui, J. Shi, and H. Dong, Fatigue Properties of Nb-Microalloyed Heavy-Duty Gear Steel, Trans. Mater. Heat Treat., 2009, 30(5), p 106–110

    Google Scholar 

  17. Metallographic examination for carburizing and tempering of plate parts. Chinese National Standard GB/T 25744-2010.

  18. C.L. Magee, In Phase Transformation. ASM, Metals Park; 1970, p. 115

  19. D.P. Koistinen and R.E. Marburger, A General Equation Prescribing Extent of Austenite-Martensite Transformation in Pure Fe-C Alloy and Plain Carbon Steels, Acta Metall., 1959, 7, p 59

    Article  Google Scholar 

  20. X.C. Xiong, B. Chen, M.X. Huang, J.F. Wang, and L. Wang, The Effect of Morphology on the Stability of Retained Austenite in a Quenched and Partitioned Steel, Scr. Mater., 2013, 68(5), p 321–324

    Article  CAS  Google Scholar 

  21. E. Jimenez-Melero, N.H.V. Dijk, L. Zhao, J. Sietsma, S.E. Offerman, J.P. Wright, and S. van der Zwaag, Characterization of Individual Retained Austenite Grains and Their Stability in Low-Alloyed TRIP Steels, Acta Mater., 2007, 55(20), p 6713–6723

    Article  CAS  Google Scholar 

  22. M. Dao, N. Chollacoop, K.J.V. Vliet, T.A. Venkatesh, and S. Suresh, Computational Modeling of the Forward and Reverse Problems in Instrumented Sharp Indentation, Acta Mater., 2001, 49(19), p 3899–3918

    Article  CAS  Google Scholar 

  23. M. Villa and M. Somers, Cryogenic Treatment of Steel: From Concept to Metallurgical Understanding, in 24th IFHTSE Congress, 2017 European Conference on Heat Treatment and Surface Engineering A3TS CONGRESS. Nice, France, June 29, 2017

  24. T.H. Ahn, C.S. Oh, D.H. Kim, K.H. Oh, H. Bei, E.P. George, and H.N. Han, Investigation of Strain-Induced Martensitic Transformation in Metastable Austenite Using Nanoindentation, Scr. Mater., 2010, 63(5), p 540–543

    Article  CAS  Google Scholar 

  25. X. Qiao, L.Z. Han, W.M. Zhang, and J.F. Gu, Nano-indentation Investigation on the Mechanical Stability of Individual Austenite in High-Carbon Steel, Mater. Charact., 2015, 110, p 86–93

    Article  CAS  Google Scholar 

  26. A. Weidner, U.D. Hangen, and H. Biermann, Nanoindentation Measurements on Deformation-Induced α’-Martensite in a Metastable Austenitic High-Alloy CrMnNi Steel, Philos. Mag. Lett., 2014, 94(8), p 522–530

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. Chen.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, W., He, X.F., Yu, W.C. et al. Nano- and Microhardness Distribution in the Carburized Case of Nb-Microalloyed Gear Steel. J. of Materi Eng and Perform 29, 4626–4630 (2020). https://doi.org/10.1007/s11665-020-04992-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-020-04992-7

Keywords

Navigation