Skip to main content
Log in

Effect of Molybdenum on Pit Initiation Rate and Pit Growth Using Electrochemical Noise and Its Correlation with Confocal Laser Scanning Microscopic Studies

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

The effect of Mo concentration on pit initiation rate and pit growth in austenitic stainless steels (SS) were investigated by electrochemical noise (EN) and confocal laser scanning microscopy (CLSM) techniques for the first time. We used 304LN, 316LN and 317LN containing different concentrations of Mo (0.02, 2.53 and 3.58 wt.%) for our studies. Using EN technique, initiation of pits and growth of pits were analyzed using Weibull and Gumbel distribution function, respectively. Pit depth was obtained using CLSM and the correlation between pit aspect ratio and Mo concentration were studied. Weibull probability plots showed that the Mo present in the alloy reduces the pit generation rates and improves the passivity. The plot for the pit size distribution using Gumbel distribution function showed the lowest metastable pit in 317LN and the highest in 304LN, suggesting the improvement in the pitting corrosion resistance due to Mo addition. The CLSM imaging showed maximum pit depth for specimen 304LN and minimum for specimen 317LN SS. Specimen 316LN SS showed intermediate pit depth. The depth of the pits observed in 304LN, 316LN and 317LN ranged from 80-100 µm, 30-40 µm and 20-30 µm, respectively. Alloy 317LN containing highest Mo concentration (3.58 wt.%) showed the lowest pit aspect ratio values followed by alloy 316LN with 2.53 wt.% Mo. These results indicate that Mo present in the stainless steel helps in arresting the pit growth and improve the resistance to pitting corrosion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. N. Upadhyay, M.G. Pujar, C.R. Das, C. Mallika, and U. Kamachi Mudali, Pitting Corrosion Studies on Solution-Annealed Borated Type 304 l Stainless Steel Using Electrochemical Noise Technique, Corrosion, 2014, 70, p 781–795

    Article  CAS  Google Scholar 

  2. A. Pardo, M. Merino, A. Coy, F. Viejo, R. Arrabal, and E. Matykina, Pitting Corrosion Behaviour of Austenitic Stainless Steels–Combining Effects of Mn and Mo Additions, Corros. Sci., 2008, 50, p 1796–1806

    Article  CAS  Google Scholar 

  3. W.J. Tobler, Influence of Molybdenum Species on Pitting Corrosion of Stainless Steels, ETH Zurich, 2004

  4. M.G. Pujar, U. Kamachi Mudali, and S.S. Singh, Electrochemical Noise Studies of the Effect of Nitrogen on Pitting Corrosion Resistance of High Nitrogen Austenitic Stainless Steels, Corros. Sci., 2011, 53, p 4178–4186

    Article  CAS  Google Scholar 

  5. M. Pujar, T. Anita, H. Shaikh, R. Dayal, and H. Khatak, Use of Electrochemical Noise (EN) Technique to Study the Effect of Sulfate and Chloride Ions on Passivation and Pitting Corrosion Behavior of 316 Stainless Steel, J. Mater. Eng. Perform., 2007, 16, p 494–499

    Article  CAS  Google Scholar 

  6. K.-H. Na and S.-I. Pyun, Effect of Sulphate and Molybdate Ions on Pitting Corrosion of Aluminium by Using Electrochemical Noise Analysis, J. Electroanal. Chem., 2006, 596, p 7–12

    Article  CAS  Google Scholar 

  7. K.-H. Na and S.-I. Pyun, Comparison of Susceptibility to Pitting Corrosion of AA2024-T4, AA7075-T651 and AA7475-T761 Aluminium Alloys in Neutral Chloride Solutions Using Electrochemical Noise Analysis, Corros. Sci., 2008, 50, p 248–258

    Article  CAS  Google Scholar 

  8. M.G. Pujar, N. Parvathavarthini, S.S. Jena, B. Tata, R. Dayal, and H. Khatak, Corrosion Behavior of 316LN and 316 Stainless Steels During Long-Term Exposure to Aerated 0.5 M NaCl Using Electrochemical Noise Technique, J. Mater. Eng. Perform., 2008, 17, p 793–801

    Article  CAS  Google Scholar 

  9. M.G. Pujar, R.P. George, P. Muraleedharan, and U.K. Mudali, Microbiologically Influenced Corrosion in UNS S31653: Detection and Analysis Using Electrochemical Noise Technique, Corrosion, 2011, 67, p 115004–115011

    Article  Google Scholar 

  10. A. Toppo, M. Pujar, C. Mallika, U.K. Mudali, and R. Dayal, Effect of Nitrogen on Stress Corrosion Behavior of Austenitic Stainless Steels Using Electrochemical Noise Technique, J. Mater. Eng. Perform., 2015, 24, p 1140–1149

    Article  CAS  Google Scholar 

  11. N. Upadhyay, M. Pujar, S.S. Singh, N.G. Krishna, C. Mallika, and U. Kamachi Mudali, Evaluation of the Effect of Molybdenum on the Pitting Corrosion Behavior of Austenitic Stainless Steels Using Electrochemical Noise Technique, Corrosion, 2017, 73, p 1320–1334

    Article  CAS  Google Scholar 

  12. J. Sanchez-Amaya, R. Cottis, and F. Botana, Shot Noise and Statistical Parameters for the Estimation of Corrosion Mechanisms, Corros. Sci., 2005, 47, p 3280–3299

    Article  CAS  Google Scholar 

  13. T. Zhang, X. Liu, Y. Shao, G. Meng, and F. Wang, Electrochemical Noise Analysis on the Pit Corrosion Susceptibility of Mg–10Gd–2Y–0.5 Zr, AZ91D Alloy and Pure Magnesium Using Stochastic Model, Corros. Sci., 2008, 50, p 3500–3507

    Article  CAS  Google Scholar 

  14. R. Cottis, Interpretation of Electrochemical Noise Data, Corrosion, 2001, 57, p 265–285

    Article  CAS  Google Scholar 

  15. H. Al-Mazeedi and R. Cottis, A Practical Evaluation of Electrochemical Noise Parameters as Indicators of Corrosion Type, Electrochim. Acta, 2004, 49, p 2787–2793

    Article  CAS  Google Scholar 

  16. R. Cottis, M. Al-Awadhi, H. Al-Mazeedi, and S. Turgoose, Measures for the Detection of Localized Corrosion with Electrochemical Noise, Electrochim. Acta, 2001, 46, p 3665–3674

    Article  CAS  Google Scholar 

  17. A. Valor, F. Caleyo, L. Alfonso, D. Rivas, and J. Hallen, Stochastic Modeling of Pitting Corrosion: A New Model for Initiation and Growth of Multiple Corrosion Pit, Corros. Sci., 2007, 49, p 559–579

    Article  CAS  Google Scholar 

  18. K.H. Na and S.I. Pyun, Electrochemical Noise Analysis of Corrosion of Pure Aluminium in Alkaline Solution in the Presence of SO42− ion, NO3 ion and Na2S Additives, Electrochim. Acta, 2007, 52, p 4363–4373

    Article  CAS  Google Scholar 

  19. K.H. Na, S.I. Pyun, and H.P. Kim, Analysis of Electrochemical Noise Obtained from Pure Aluminium in Neutral Chloride and Alkaline Solutions, Corros. Sci., 2007, 49, p 220–230

    Article  CAS  Google Scholar 

  20. S.I. Pyun, E.J. Lee, and C.H. Kim, Stochastic Approach to Analysis of Pitting Corrosion of Anodic Oxide Film on Al-1w.t% Si-0.5 wt.% Cu Alloy, Surf. Coat. Technol., 1993, 62, p 480–485

    Article  CAS  Google Scholar 

  21. J. Vajo, R. Wei, A. Phelps, L. Reiner, G. Herrera, O. Cervantes, D. Gidanian, B. Bavarian, and C. Kappes, Application of Extreme Value Analysis to Crevice Corrosion, Corros. Sci., 2003, 45, p 497–509

    Article  CAS  Google Scholar 

  22. E. Gumbel, Statistics of Extremes, Columbia Univ. press, New York, 1958, p 94

    Book  Google Scholar 

  23. P. Aziz, Application of the Statistical Theory of Extreme Values to the Analysis of Maximum Pit Depth Data for Aluminum, Corrosion, 1956, 12, p 495–506

    Article  Google Scholar 

  24. T. Shibata, Application of Extreme Value Statistics to Corrosion, Corrosion, 1996, 99, p 813–830

    Article  Google Scholar 

  25. M. Pujar, C.R. Das, S. Thirunavukkarasu, U.K. Mudali, A. Bhaduri, J. Brijitta, and B. Tata, Effect of Boron Addition on Pitting Corrosion Resistance of Modified 9Cr–1Mo Steel, Application of Electrochemical Noise, Mater. Chem. Phys., 2011, 130, p 536–547

    Article  CAS  Google Scholar 

  26. A.R. Trueman, Determining the Probability of Stable Pit Initiation on Aluminium Alloys Using Potentiostatic Electrochemical Measurements, Corros. Sci., 2005, 47, p 2240–2256

    Article  CAS  Google Scholar 

  27. M.G. Pujar and U. Kamachi Mudali, Metastable Pitting Corrosion in 316LN Stainless Steel Using Electrochemical Noise Analysis, J. Corros. Sci. Eng., 2012, 5, p 1–15

    Google Scholar 

  28. T. Zhang, C. Chen, Y. Shao, G. Meng, F. Wang, X. Li, and C. Dong, Corrosion of Pure Magnesium Under Thin Electrolyte Layers, Electrochim. Acta, 2008, 53, p 7921–7931

    Article  CAS  Google Scholar 

  29. K. Sugimoto and Y. Sawada, The Role of Alloyed Molybdenum in Austenitic Stainless Steels in the Inhibition of Pitting in Neutral Halide Solutions, Corrosion, 1976, 32, p 347–352

    Article  CAS  Google Scholar 

  30. M.A. Rodriguez, Inhibition of Localized Corrosion in Chromium Containing Stainless Alloys, Corros. Rev., 2012, 30, p 19–32

    Article  CAS  Google Scholar 

  31. M. Sakashita and N. Sato, Passivity of Metals, R.P. Frankenthal and J. Kruger, Ed., The Electrochemical Society, Princeton, NJ, 1978, p 479–483

    Google Scholar 

  32. G. Ilevbare and G. Burstein, The Inhibition of Pitting Corrosion of Stainless Steels by Chromate and Molybdate Ions, Corros. Sci., 2003, 45, p 1545–1569

    Article  CAS  Google Scholar 

  33. H. Yashiro, A. Oyama, and K. Tanno, Effects of Temperature and Potential on the Inhibitive Action of Oxoacid Salts for Pitting in High-Temperature Chloride Solutions, Corrosion, 1997, 53, p 290–297

    Article  CAS  Google Scholar 

  34. A. Devasenapathi and V. Raja, Effect of Externally Added Molybdate on Repassivation and Stress Corrosion Cracking of Type 304 Stainless Steel in Hydrochloric Acid, Corrosion, 1996, 52, p 243–249

    Article  CAS  Google Scholar 

  35. J. Gluszek, G. Freeman, J. Baron, and J. Kubicki, Effect of Composition Modification of Passive Films Formed on Ferritic Stainless Steel on Resistance to Pitting, Corrosion, 1985, 41, p 527–532

    Article  CAS  Google Scholar 

  36. Y. Zuo, H. Wang, J. Zhao, and J. Xiong, The Effects of Some Anions on Metastable Pitting of 316L Stainless Steel, Corros. Sci., 2002, 44, p 13–24

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. P. George.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Upadhyay, N., Shankar, A.R., Anandkumar, B. et al. Effect of Molybdenum on Pit Initiation Rate and Pit Growth Using Electrochemical Noise and Its Correlation with Confocal Laser Scanning Microscopic Studies. J. of Materi Eng and Perform 29, 5337–5345 (2020). https://doi.org/10.1007/s11665-020-04920-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-020-04920-9

Keywords

Navigation