Skip to main content
Log in

The Examination of Microstructure and Thermal Oxidation Behavior of Laser-Remelted High-Velocity Oxygen Liquid Fuel Fe/Al Coating

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

Aluminide intermetallics with superior mechanical and thermal properties can be produced using various techniques. Laser-remelted coating surfaces provide lower porosity and superior adhesion to the substrate. In the present study, Fe and Al powders were sprayed on the 316L stainless steel substrate using high-velocity oxygen liquid fuel (HVOLF) technique. The produced composite coating was subjected to laser heat treatment for the remelting of the coating layer. HVOLF Fe/Al coating, the remelted coating and the substrate were exposed to isothermal oxidation tests at 950 °C for 5, 25, 50 and 100 h. Before and after the oxidation tests, the samples were characterized using x-ray diffraction, scanning electron microscopy (SEM) and SEM elemental mapping analysis. Fe and Al were alloyed with the substrate via laser melting, and thus, an alumina-forming surface layer was obtained. Besides, the surface hardness of the substrate was increased by the remelting process. After the oxidation tests, the obtained results showed that the laser-remelted coating exhibits better oxidation performance compared to the substrate material and HVOLF Fe/Al coating with the effect of the formation of the protective alumina oxide layer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. M.R. Dorfman, Thermal Spray Coatings, Handbook of Environmental Degradation of Materials, M. Kutz, Ed., William Andrew Publishing, 2005, p 405–422

  2. L. Pawlowski, The Science and Engineering of Thermal Spray Coatings, 2nd ed., Wiley, New York, 2008

    Book  Google Scholar 

  3. H. Singh, M.S. Grewal, H.S. Sekhon, and R.G. Rao, Sliding Wear Performance of High-Velocity Oxy-Fuel Spray A12O3/TiO2 and Cr2O3 Coatings, Proc. Inst. Mech. Eng. Part J J. Eng. Tribol., 2008, 222(4), p 601–610. https://doi.org/10.1243/13506501jet362

    Article  CAS  Google Scholar 

  4. M.E. Aalamialeagha, S.J. Harris, and M. Emamighomi, Influence of the HVOF Spraying Process on the Microstructure and Corrosion Behaviour of Ni-20%Cr Coatings, J. Mater. Sci., 2003, 38(22), p 4587–4596

    Article  CAS  Google Scholar 

  5. T. Sudaprasert, P.H. Shipway, and D.G. McCartney, Sliding Wear Behaviour of HVOF Sprayed WC-Co Coatings Deposited with Both Gas-Fuelled and Liquid-Fuelled Systems, Wear, 2003, 255(7-12), p 943–949

    Article  CAS  Google Scholar 

  6. J.A. Cabral-Miramontes, C. Gaona-Tiburcio, F. Almeraya-Calderón, F.H. Estupiñan-Lopez, G.K. Pedraza-Basulto, and C.A. Poblano-Salas, Parameter Studies on High-Velocity Oxy-Fuel Spraying of CoNiCrAlY Coatings Used in the Aeronautical Industry, Int. J. Corros., 2014, 2014, p 1–8

    Article  Google Scholar 

  7. B. Song, M. Bai, K.T. Voisey, and T. Hussain, Role of Oxides and Porosity on High-Temperature Oxidation Of Liquid-Fueled HVOF Thermal-Sprayed Ni50Cr Coatings, J. Therm. Spray Technol., 2017, 26, p 554–568

    Article  CAS  Google Scholar 

  8. M. Vostrák, M. Hruška, and Š. Houdková, Laser Re-melting of HVOF Sprayed NiCrBSi Coatings, in METAL 201322nd International Conference on Metallurgy and Materials, Conference Proceedings (2013) pp. 921–925

  9. I.D. Utu and G. Marginean, Effect of Electron Beam Remelting on the Characteristics of HVOF sprayed Al2O3-TiO2 Coatings Deposited on Titanium Substrate, Colloids Surf. A Physicochem. Eng. Asp., 2017, 526, p 70–75

    Article  CAS  Google Scholar 

  10. M. Afzal, M. Ajmal, A. Nusair Khan, A. Hussain, and R. Akhter, Surface Modification of Air Plasma Spraying WC-12%Co Cermet Coating by Laser Melting Technique, Opt. Laser Technol., 2014, 56, p 202–206

    Article  CAS  Google Scholar 

  11. E. Yasa, J. Deckers, and J.P. Kruth, The Investigation of the Influence of Laser Re-melting on Density, Surface Quality and Microstructure of Selective Laser Melting Parts, Rapid Prototyp. J., 2011, 17(5), p 312–327

    Article  Google Scholar 

  12. R. González, M. Cadenas, R. Fernández, J.L. Cortizo, and E. Rodríguez, Wear Behaviour of Flame Sprayed NiCrBSi Coating Remelted by Flame or by Laser, Wear, 2007, 262(3-4), p 301–307

    Article  Google Scholar 

  13. Z. Brytan, M. Bonek, L.A. Dobrzański, D. Ugues, and M.A. Grande, The Laser Surface Remelting of Austenitic Stainless Steel, Mater. Sci. Forum, 2010, 654–656, p 2511–2514

    Google Scholar 

  14. Q. Han and Y. Jiao, Effect of Heat Treatment and Laser Surface Remelting on AlSi10Mg Alloy Fabricated by Selective Laser Melting, Int. J. Adv. Manuf. Technol., 2019, 102(9-12), p 3315–3324. https://doi.org/10.1007/s00170-018-03272-y

    Article  Google Scholar 

  15. Z. Wang, Q. Zhang, P. Guo, X. Gao, L. Yang, and Z. Song, Effects of Laser Surface Remelting on Microstructure and Properties of Biodegradable Zn-Zr Alloy, Mater. Lett., 2018, 226, p 52–54

    Article  CAS  Google Scholar 

  16. M. Rakhes, E. Koroleva, and Z. Liu, Improvement of Corrosion Performance of HVOF MMC Coatings by Laser Surface Treatment, Surf. Eng., 2011, 27(10), p 729–733. https://doi.org/10.1179/1743294411Y.0000000001

    Article  CAS  Google Scholar 

  17. H.T. Wang, C.J. Li, G.J. Yang, and C.X. Li, Effect of Heat Treatment on the Microstructure and Property of Cold-Sprayed Nanostructured FeAl/Al2O3 Intermetallic Composite Coating, Vacuum, 2008, 83(1), p 146–152

    Article  CAS  Google Scholar 

  18. C. Senderowski, Nanocomposite Fe-Al Intermetallic Coating Obtained by Gas Detonation Spraying of Milled Self-Decomposing Powder, J. Therm. Spray Technol., 2014, 23(7), p 1124–1134

    Article  CAS  Google Scholar 

  19. T. Chmielewski, P. Siwek, M. Chmielewski, A. Piątkowska, A. Grabias, and D. Golański, Structure and Selected Properties of Arc Sprayed Coatings Containing In-situ Fabricated Fe-Al Intermetallic Phases, Metals (Basel), 2018, 8(12), p 1059. https://doi.org/10.3390/met8121059

    Article  CAS  Google Scholar 

  20. Q. Zhang, C.J. Li, X.R. Wang, Z.L. Ren, C.X. Li, and G.J. Yang, Formation of NiAl Intermetallic Compound by Cold Spraying of Ball-Milled Ni/Al Alloy Powder Through Postannealing Treatment, J. Therm. Spray Technol., 2008, 17, p 715–720

    Article  CAS  Google Scholar 

  21. H.Y. Lee, S.H. Jung, S.Y. Lee, and K.H. Ko, Fabrication of Cold Sprayed Al-Intermetallic Compounds Coatings by Post Annealing, Mater. Sci. Eng. A, 2006, 433(1-2), p 139–143

    Article  Google Scholar 

  22. H.T. Wang, C.J. Li, G.J. Yang, and C.X. Li, Cold Spraying of Fe/Al Powder Mixture: Coating Characteristics and Influence of Heat Treatment on the Phase Structure, Appl. Surf. Sci., 2008, 255(5 PART 1), p 2538–2544

    Article  CAS  Google Scholar 

  23. T. Chmielewski and D.A. Golański, New Method of In-situ Fabrication of Protective Coatings Based on Fe-Al Intermetallic Compounds, Proc. Inst. Mech. Eng. Part B J. Eng. Manuf., 2011, https://doi.org/10.1177/2041297510394050

    Article  Google Scholar 

  24. H. Buscail, R. Rolland, and S. Perrier, Cyclic Oxidation of AISI, 316L Stainless Steel—Influence of Water Vapour Between 800 and 1000 °C, Corros. Eng. Sci. Technol., 2014, 49(3), p 169–179. https://doi.org/10.1179/1743278213y.0000000111

    Article  CAS  Google Scholar 

  25. Y.Z. Liu, X.B. Hu, S.J. Zheng, Y.L. Zhu, H. Wei, and X.L. Ma, Microstructural Evolution of the Interface Between NiCrAlY Coating and Superalloy During Isothermal Oxidation, Mater. Des., 2015, 2015(80), p 63–69

    Article  Google Scholar 

  26. N. Pilling and R. Bedworth, The Oxidation of Metals at High Temperatures, J. Inst. Met., 1923, 29, p 529

    Google Scholar 

  27. M. Daroonparvar, M.A.M. Yajid, N.M. Yusof, M.S. Hussain, and H.R.B. Rad, Formation of a Dense and Continuous Al2O3 Layer in nano thermal barrier coating systems for the Suppression of Spinel Growth on the Al2O3 Oxide Scale During Oxidation, J. Alloys Compd., 2013, 571, p 205–220

    Article  CAS  Google Scholar 

  28. K. Messaoudi, A.M. Huntz, and B. Lesage, Diffusion and Growth Mechanism of Al2O3 Scales on Ferritic Fe-Cr-Al Alloys, Mater. Sci. Eng. A, 1998, 247(1-2), p 248–262

    Article  Google Scholar 

  29. M.P. Brady, Y. Yamamoto, M.L. Santella, and B.A. Pint, Effects of Minor Alloy Additions and Oxidation Temperature on Protective Alumina Scale Formation in Creep-Resistant Austenitic Stainless Steels, Scr. Mater., 2007, 57(12), p 1117–1120

    Article  CAS  Google Scholar 

  30. M.P. Brady, J. Magee, Y. Yamamoto, D. Helmick, and L. Wang, Co-Optimization of Wrought Alumina-Forming Austenitic Stainless Steel Composition Ranges for High-Temperature Creep and Oxidation/Corrosion Resistance, Mater. Sci. Eng. A, 2014, 590, p 101–115

    Article  CAS  Google Scholar 

  31. X. Guo, K. Chen, W. Gao, Z. Shen, and L. Zhang, Corrosion Behavior of Alumina-Forming and Oxide Dispersion Strengthened Austenitic 316 Stainless Steel in Supercritical Water, Corros. Sci., 2018, 138, p 297–306

    Article  CAS  Google Scholar 

  32. T. Yener, K.M. Doleker, and A. Erdogan, High Temperature Oxidation Behavior of Low Temperature Aluminized Mirrax® ESR Steel, Mater. Res. Express, 2019, 6, p 116407

    Article  CAS  Google Scholar 

  33. K.M. Doleker, Y. Ozgurluk, H. Ahlatci, and A.C. Karaoglanli, Evaluation of Oxidation and Thermal Cyclic Behavior of YSZ, Gd2Zr2O7 and YSZ/Gd2Zr2O7 TBCs, Surf. Coat. Technol., 2019, 371, p 262–275. https://doi.org/10.1016/j.surfcoat.2018.11.055

    Article  CAS  Google Scholar 

  34. H.J. Grabke, Oxidation of NiAl and FeAl, Intermetallics, 1999, 7(10), p 1153–1158

    Article  CAS  Google Scholar 

  35. J.M. Guilemany, N. Cinca, S. Dosta, and C.R.C. Lima, High-Temperature Oxidation of Fe40Al Coatings Obtained by HVOF Thermal Spray, Intermetallics, 2007, 15(10), p 1384–1394

    Article  CAS  Google Scholar 

  36. Z. Liu, W. Gao, and F. Wang, Oxidation Behaviour of FeAl Intermetallic Coatings Produced by Magnetron Sputter Deposition, Scr. Mater., 1998, 39(11), p 1497–1502. https://doi.org/10.1016/S1359-6462(98)00360-1

    Article  CAS  Google Scholar 

  37. X. Xu, H. Wei, J. Xiang, L. Wang, M. Liu, H. Zhang, D. Men, and J. An, Oxidation Mechanism of Three Fe-Al Alloys with and Without Addition of 0.1 At% Y at 800 °C, J. Rare Earths (2019). https://doi.org/10.1016/j.jre.2019.10.007

    Article  Google Scholar 

  38. P. Guo, Y. Shao, C. Zeng, M. Wu, and W. Li, Oxidation Characterization of FeAl Coated 316 Stainless Steel Interconnects by High-Energy Micro-Arc Alloying Technique for SOFC, Mater. Lett., 2011, 65(19-20), p 3180–3183

    Article  CAS  Google Scholar 

  39. A.M. Hodge and D.C. Dunand, Synthesis of Nickel-Aluminide Foams by Pack-Aluminization of Nickel Foams, Intermetallics, 2001, 9(7), p 581–589

    Article  CAS  Google Scholar 

  40. E. Huttunen-Saarivirta, F.H. Stott, V. Rohr, and M. Schütze, Erosion-Oxidation Behaviour of Pack-Aluminized 9% Chromium Steel Under Fluidized-Bed Conditions at Elevated Temperature, Corros. Sci., 2007, 49(7), p 2844–2865

    Article  CAS  Google Scholar 

  41. B.A. Pint, W.D. Porter, and I.G. Wright, The Effect of Thermal Expansion on Spallation Behavior of Fe-Base Alumina-Forming Alloys, Mater. Sci. Forum, 2008, 595–598, p 1083–1092

    Article  Google Scholar 

  42. P.Y. Hou, The Reactive Element Effect—Past, Present and Future, Mater. Sci. Forum, 2011, 696, p 39–44

    Article  CAS  Google Scholar 

  43. K. Przybylski, S. Chevalier, P. Juzoń, A. Galerie, G. Borchardt, O. Heintz, and J.P. Larpin, The Role of Zr in the High-Temperature Oxidation of Fe3Al, Mater. Sci. Forum, 2008, 595–598, p 1103–1110

    Article  Google Scholar 

  44. A. Hotař, P. Kejzlar, M. Palm, and J. Mlnařík, The Effect of Zr on High-Temperature Oxidation Behaviour of Fe3Al-Based Alloys, Corros. Sci., 2015, 100, p 147–157

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kadir Mert Doleker.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Doleker, K.M. The Examination of Microstructure and Thermal Oxidation Behavior of Laser-Remelted High-Velocity Oxygen Liquid Fuel Fe/Al Coating. J. of Materi Eng and Perform 29, 3220–3232 (2020). https://doi.org/10.1007/s11665-020-04873-z

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-020-04873-z

Keywords

Navigation