Skip to main content

Advertisement

Log in

Mechanical Properties of Cu-B/Diamond Composites Prepared by Gas Pressure Infiltration

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

Diamond particles reinforced boron-alloyed Cu matrix (Cu-xB/diamond, x = 0.1, 0.2, 0.3, 0.4, 0.5, and 1.0 wt.%) composites were prepared by gas pressure infiltration. The size of the diamond particles was ~ 230 μm and the diamond volume fraction in the composites was ~ 66%. The interfacial carbide evolution plays an important role in improving the interfacial bonding and enhancing the mechanical properties of the Cu-B/diamond composites. The tensile, compressive and bending strengths firstly increase and then decrease with increasing boron content, giving a maximum tensile strength of 204 MPa, a maximum compressive strength of 608 MPa, and a maximum bending strength of 513 MPa at 0.5 wt.% B addition. The monotonic uniaxial tensile stress–strain curves of the Cu-B/diamond composites were predicted by using the Mori–Tanaka, generalized self-consistent, and Torquato identical hard spheres approximation models. The results suggest that alloying B to Cu matrix is an effective route to strengthening Cu/diamond composites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. C. Zweben, Advances in Composite Materials for Thermal Management in Electronic Packaging, JOM, 1998, 50, p 47–51

    Article  CAS  Google Scholar 

  2. K. Ueda, K. Kawamoto, and H. Asano, High-Temperature and High-Voltage Characteristics of Cu/Diamond Schottky Diodes, Diam. Relat. Mater., 2015, 57, p 28–31

    Article  CAS  Google Scholar 

  3. H. Hu and J. Kong, Improved Thermal Performance of Diamond-Copper Composites with Boron Carbide Coating, J. Mater. Eng. Perform., 2014, 23, p 651–657

    Article  CAS  Google Scholar 

  4. C. Zhao and J. Wang, Enhanced Mechanical Properties in Diamond/Cu Composites with Chromium Carbide Coating for Structural Applications, Mater. Sci. Eng., A, 2013, 588, p 221–227

    Article  CAS  Google Scholar 

  5. T. Sadowski and P. Golewski, Heat Transfer in Composites Subjected to Temperature Variations, Solid State Phenom., 2014, 216, p 140–145

    Article  Google Scholar 

  6. P. Sadowski, K. Kowalczyk-Gajewska, and S. Stupkiewicz, Classical Estimates of the Effective Thermoelastic Properties of Copper-Graphene Composites, Compos. Part B-Eng., 2015, 80, p 278–290

    Article  CAS  Google Scholar 

  7. E. Linul, L. Marsavina, P.A. Linul, and J. Kovacik, Cryogenic and High Temperature Compressive Properties of Metal Foam Matrix Composites, Compos. Struct., 2019, 209, p 490–498

    Article  Google Scholar 

  8. L. Marsavina, T. Sadowski, and N. Faur, Numerical Investigation of the Stress Field Near a Crack Normal to Ceramic-Metal Interface, J. Mech. Sci. Technol., 2011, 25, p 309–315

    Article  Google Scholar 

  9. Y. Watanabe, T. Sugiura, H. Sato, and H. Tsuge, Fabrication of Al-Based Composites by Centrifugal Mixed-Powder Method and Their Application for Grinding Wheels, J. Mater. Eng. Perform., 2019, 28, p 3852–3863

    Article  CAS  Google Scholar 

  10. H.L. Zhang, J.H. Wu, Y. Zhang, J.W. Li, and X.T. Wang, Effect of Metal Matrix Alloying on Mechanical Strength of Diamond Particle Reinforced Aluminum Composites, J. Mater. Eng. Perform., 2015, 24, p 2556–2562

    Article  CAS  Google Scholar 

  11. D.J. Weidner, Y. Wang, and M.T. Vaughan, Strength of Diamond, Science, 1994, 266, p 419–422

    Article  CAS  Google Scholar 

  12. V. Sinha and J.E. Spowart, Influence of Interfacial Carbide Layer Characteristics on Thermal Properties of Copper-Diamond Composites, J. Mater. Sci., 2013, 48, p 1330–1341

    Article  CAS  Google Scholar 

  13. A.M. Abyzov, F.M. Shakhov, A.I. Averkin, and V.I. Nikolaev, Mechanical Properties of a Diamond-Copper Composite with High Thermal Conductivity, Mater. Des., 2015, 87, p 527–539

    Article  CAS  Google Scholar 

  14. G.T. Hohensee, R.B. Wilson, and D.G. Cahill, Thermal Conductance of Metal-Diamond Interfaces at High Pressure, Nat. Commun., 2015, 6, p 6578

    Article  CAS  Google Scholar 

  15. J.H. Wu, H.L. Zhang, Y. Zhang, J.W. Li, and X.T. Wang, Enhanced Mechanical Properties in Al/Diamond Composites by Si Addition, Rare Met., 2016, 35, p 701–704

    Article  CAS  Google Scholar 

  16. K. Mizuuchi, K. Inoue, Y. Agari, M. Tanaka, T. Takeuchi, J. Tani, M. Kawahara, Y. Makino, and M. Ito, Effect of Boron Addition on the Thermal Properties of Diamond-Particle-Dispersed Cu-Matrix Composites Fabricated by SPS, J. Mater. Sci. Chem. Eng., 2016, 4, p 1–16

    CAS  Google Scholar 

  17. Y.H. Sun, L.K. He, C. Zhang, Q.N. Meng, B.C. Liu, K. Gao, M. Wen, and W.T. Zheng, Enhanced Tensile Strength and Thermal Conductivity in Copper Diamond Composites with B4C Coating, Sci. Rep., 2017, 7, p 10727

    Article  Google Scholar 

  18. H.L. Zhang, Y.X. Qi, J.W. Li, J.G. Wang, and X.T. Wang, Effect of Zr Content on Mechanical Properties of Diamond/Cu-Zr Composites Produced by Gas Pressure Infiltration, J. Mater. Eng. Perform., 2018, 27, p 714–720

    Article  CAS  Google Scholar 

  19. G.Z. Bai, L.H. Wang, Y.J. Zhang, X.T. Wang, J.G. Wang, M.J. Kim, and H.L. Zhang, Tailoring Interface Structure and Enhancing Thermal Conductivity of Cu/Diamond Composites by Alloying Boron to the Cu Matrix, Mater. Charact., 2019, 152, p 265–275

    Article  CAS  Google Scholar 

  20. Z.P. Fang, The interfacial defects of Al/diamond composites produced by gas pressure infiltration, Master Thesis (University of Science and Technology Beijing, 2017)

  21. X.Y. Tao, L.X. Dong, X.N. Wang, W.K. Zhang, B.J. Nelson, and X.D. Li, B4C-Nanowires/Carbon-Microfiber Hybrid Structures and Composites from Cotton T-Shirts, Adv. Mater., 2010, 22, p 2055–2059

    Article  CAS  Google Scholar 

  22. K.A. Weidenmann, R. Tavangar, and L. Weber, Mechanical Behaviour of Diamond Reinforced Metals, Mater. Sci. Eng., A, 2009, 523, p 226–234

    Article  Google Scholar 

  23. B.A. Mcwilliams, K.T. Ramesh, and C.F. Yen, Probabilistic Response of Heterogeneous Particle Reinforced Metal Matrix Composites with Particle Size Dependent Strengthening, Comput. Mater. Sci., 2013, 79, p 15–24

    Article  CAS  Google Scholar 

  24. S. Panda, A study on deformation behavior of Cu-Al2O3 metal matrix composite with the variation of size and volume fraction of reinforcement particle, Master Thesis (National Institute of Technology, Rourkela, 2012)

  25. H.O. Pierson, Handbook of Refractory Carbides and Nitrides: Properties, Characteristics, Processing and Applications, Noyes Publications, Westwood, 1996

    Google Scholar 

  26. T.S. Chow, Tensile Strength of Filled Polymers, J. Polym. Sci. Polym. Phys. Ed., 1982, 20, p 2103–2109

    Article  CAS  Google Scholar 

  27. Q.Y. Wang, W.P. Shen, and M.L. Ma, Mean and Instantaneous Thermal Expansion of Uncoated and Ti Coated Diamond/Copper Composite Materials, Adv. Mater. Res., 2013, 702, p 202–206

    Article  CAS  Google Scholar 

  28. W.H. Cubberly, Properties and Selection: Non-ferrous Alloys and Pure Metals, Metals Handbook, 9th ed., American Society for Metals, Metals Park, 1979

    Google Scholar 

  29. R. Mueller and A. Mortensen, Simplified Prediction of the Monotonic Uniaxial Stress-Strain Curve of Non-linear Particulate Composites, Acta Mater., 2006, 54, p 2145–2155

    Article  CAS  Google Scholar 

  30. M. Kouzeli, L. Weber, C. San Marchi, and A. Mortensen, Quantification of Microdamage Phenomena During Tensile Straining of High Volume Fraction Particle Reinforced Aluminium, Acta Mater., 2001, 49, p 497–505

    Article  CAS  Google Scholar 

  31. T. Mori and K. Tanaka, Average Stress in Matrix and Average Elastic Energy of Materials with Misfitting Inclusions, Acta Metall., 1973, 211, p 571–574

    Article  Google Scholar 

  32. G.J. Weng, The Theoretical Connection Between Mori-Tanaka’s Theory and the Hashin-Shtrikman-Walpole Bounds, Int. J. Eng. Sci., 1990, 28, p 1111–1120

    Article  Google Scholar 

  33. R.M. Christensen and K.H. Lo, Solutions for Effective Shear Properties in Three Phase Sphere and Cylinder Models, J. Mech. Phys. Solids, 1979, 27, p 315–330

    Article  CAS  Google Scholar 

  34. R.M. Christensen, Erratum, J. Mech. Phys. Solids, 1986, 34, p 639

    Article  Google Scholar 

  35. R.M. Christensen, A Critical Evaluation for a Class of Micro-mechanics Models, J. Mech. Phys. Solids, 1990, 38, p 379–404

    Article  Google Scholar 

  36. S. Torquato, Effective Stiffness Tensor of Composite Media: II. Applications to Isotropic Dispersions, J. Mech. Phys. Solids, 1998, 46, p 1411–1440

    Article  CAS  Google Scholar 

  37. S. Torquato, Random Heterogeneous Materials: Microstructure and Macroscopic Properties, Interdisciplinary Applied Mathematics, Springer, New York, 2005

    Google Scholar 

  38. J.R. Davis, Copper and Copper Alloys, ASM International, Cleveland, 2001

    Google Scholar 

Download references

Acknowledgment

This work is financially supported by the National Key Research and Development Program of China (No. 2016YFB0402102), the National Natural Science Foundation of China (No. 51571015), and the Superior Discipline Talent Team Support Plan in Universities of Shandong Province, China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hailong Zhang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bai, G., Zhang, Y., Dai, J. et al. Mechanical Properties of Cu-B/Diamond Composites Prepared by Gas Pressure Infiltration. J. of Materi Eng and Perform 29, 3107–3119 (2020). https://doi.org/10.1007/s11665-020-04790-1

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-020-04790-1

Keywords

Navigation