Skip to main content
Log in

Mechanical and Electrical Properties Investigation of 3D-Printed Acrylonitrile–Butadiene–Styrene Graphene and Carbon Nanocomposites

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

Acrylonitrile–butadiene–styrene (ABS) nanocomposite filaments for 3D-printing were produced by melt compounding and extrusion. Two types of nanoadditives were employed: (a) graphene nanoplatelets (GnP) at various concentrations and (b) carbon nanotubes (CNTs). Fused filament fabrication (FFF) 3D printer was used for the fabrication of specimens, according to international standards to be employed for the determination of the tension and flexural mechanical properties of the specimens and the correlation with their microstructure. Nanocomposite filaments were also tested in tension, to evaluate the effect of 3D printing on the material. Moreover, the electrical properties of the specimens were also determined. As found out, a decrease in the tensile strength, the tensile modulus of elasticity, the flexural strength, and the flexural modulus of elasticity can be observed with the increase in the GnP concentration, in every case. ABS specimens filled with CNTs exhibited higher tensile and flexural strength and a more brittle behavior when compared to pure ABS and ABS with GnP. Regarding the electrical properties of the composites, it was found that dielectric constant increases by increasing GnP content, the specimens remaining at the same time rather nonconductive, even at a concentration of 10 wt.% in GnP. In contrast, ABS filled with CNTs at a concentration of 10% illustrated a large conductivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. E. Karahaliou and P.A. Tarantil, Preparation of Poly (Acrylonitrile–Butadiene–Styrene)/Montmorillonite Nanocomposites and Degradation Studies During Extrusion Reprocessing, J. Appl. Polym. Sci., 2009, 113, p 2271–2281. https://doi.org/10.1002/app.30158

    Article  CAS  Google Scholar 

  2. J. Aalaie and A. Rahmatpour, Study on Preparation and Properties of Acrylonitrile-Butadiene-Styrene/Montmorillonite Nanocomposites, J. Macromol. Sci. Part B Phys., 2007, 46, p 1255–1265. https://doi.org/10.1080/00222340701629372

    Article  CAS  Google Scholar 

  3. Y. Li and H. Shimizu, Improvement in Toughness of Poly(l-lactide) (PLLA) Through Reactive Blending with Acrylonitrile–Butadiene–Styrene Copolymer (ABS): Morphology and Properties, Eur. Polym. J., 2009, 45, p 738–746. https://doi.org/10.1016/j.eurpolymj.2008.12.010

    Article  CAS  Google Scholar 

  4. D.Y. Wu, S. Bateman, and M. Partlett, Ground Rubber/Acrylonitrile-Butadiene-Styrene Composites, Compos. Sci. Technol., 2007, 67, p 1909–1919. https://doi.org/10.1016/j.compscitech.2006.10.012

    Article  CAS  Google Scholar 

  5. A. Shenavar and F. Abbasi, Morphology, Thermal, and Mechanical Properties of Acrylonitrile–Butadiene–Styrene/Carbon Black Composites, Appl. Polym. Sci. J., 2007, 105, p 2236–2244. https://doi.org/10.1002/app.26219

    Article  CAS  Google Scholar 

  6. L.L. Wang, L.Q. Zhang, and M. Tian, Mechanical and Tribological Properties of Acrylonitrile–Butadiene Rubber Filled with Graphite and Carbon Black, Mater. Des., 2012, 39, p 450–457. https://doi.org/10.1016/j.matdes.2012.02.051

    Article  CAS  Google Scholar 

  7. S.K. Yeh, S. Agarwal, and R.K. Gupta, Wood–Plastic Composites Formulated with Virgin and Recycled ABS, Compos. Sci. Technol., 2009, 69, p 2225–2230. https://doi.org/10.1016/j.compscitech.2009.06.007

    Article  CAS  Google Scholar 

  8. A.K. Sood, R.K. Ohdar, and S.S. Mahapatra, Experimental Investigation and Empirical Modelling of FDM Process for Compressive Strength Improvement, J. Adv. Res., 2012, 3, p 81–90. https://doi.org/10.1016/j.jare.2011.05.001

    Article  CAS  Google Scholar 

  9. Â.F. Rodrõ, J.P. Thomas, and J.E. Renaud, Mechanical Behavior of Acrylonitrile Butadiene Styrene (ABS) Fused Deposition Materials. Experimental Investigation, Rapid Prototyp. J., 2001, 7, p 148–158. https://doi.org/10.1108/13552540310489604

    Article  Google Scholar 

  10. S. Ahn and P.K. Wright, Anisotropic Material Properties Of Fused Deposition Modeling ABS, Rapid Prototyp. J., 2002, 8, p 248–257. https://doi.org/10.1108/13552540210441166

    Article  Google Scholar 

  11. A. Arivazhagan and S.H. Masood, Dynamic Mechanical Properties of ABS Material Processed by Fused Deposition Modelling, Int. J. Eng. Res. Appl. (IJERA), 2012, 2(3), p 2009–2014. https://doi.org/10.3844/ajeassp.2014.307.315

    Article  Google Scholar 

  12. M. Nikzad, S.H. Masood, and I. Sbarski, Thermo-Mechanical Properties of a Highly Filled Polymeric Composites for Fused Deposition Modeling, Mater. Des., 2011, 32, p 3448–3456. https://doi.org/10.1016/j.matdes.2011.01.056

    Article  CAS  Google Scholar 

  13. M. Nikzad, S.H. Masood, I. Sbarski, A. Groth, Thermo-mechanical properties of a metal-filled polymer composite for fused deposition modelling applications 1 introduction 2 experimental procedures. in 5th Australasian Congress on Applied Mechanics, ACAM 2007, 10–12 December 2007, (Brisbane, Australia, 2007)

  14. L. Li, Q. Sun, C. Bellehumeur, and P. Gu, Composite Modeling and Analysis for Fabrication of FDM Prototypes with Locally Controlled Properties, J. Manuf. Process., 2002, 4, p 129–141

    Article  Google Scholar 

  15. L.M. Galantucci, F. Lavecchia, and G. Percoco, Study of Compression Properties of Topologically Optimized FDM Made Structured Parts, CIRP Ann. Manuf. Technol., 2008, 57, p 243–246. https://doi.org/10.1016/j.cirp.2008.03.009

    Article  Google Scholar 

  16. O. Lužanin, D. Movrin, and M. Plan, Effect of Layer Thickness, Deposition Angle, and Infill On Maximum Flexural Force in FDM-Built Specimens, J. Technol. Plast., 2014, 39, p 49–58. https://doi.org/10.1007/978-1-137-31426-0_1M4-Citavi

    Article  Google Scholar 

  17. K. Savvakis, M. Petousis, A. Vairis, N. Vidakis, A.T. Bikmeyev, Experimental determination of the tensile strength of fused deposition modelling parts. in ASME 2014 International Mechanical Engineering Congress & Exposition, (Montreal, Quebec, Canada, November 8–13, 2014)

  18. T.L. Khuong, G. Zhao, M. Farid, R. Yu, Z.Z. Sun, and M. Rizwan, Tensile Strength and Flexural Strength Testing of Acrylonitrile Butadiene Styrene (ABS) Materials for Biomimetic Robotic Applications, J. Biomim. Biomater. Biomed. Eng., 2014, 20, p 11–21. https://doi.org/10.4028/www.scientific.net/JBBBE.20.11

    Article  CAS  Google Scholar 

  19. A.K. Singh, B. Patil, N. Hoffmann, B. Saltonstall, M. Doddamani, and N. Gupta, Additive Manufacturing of Syntactic Foams: Part 1: Development, Properties, and Recycling Potential of Filaments, JOM, 2018, 70, p 303–309. https://doi.org/10.1007/s11837-017-2734-7

    Article  CAS  Google Scholar 

  20. A.K. Singh, B. Patil, N. Hoffmann, B. Saltonstall, M. Doddamani, and N. Gupta, Additive Manufacturing of Syntactic Foams: part 2: Development, Properties, and Recycling Potential of Filaments, JOM, 2018, 70, p 310–314. https://doi.org/10.1007/s11837-017-2734-7

    Article  CAS  Google Scholar 

  21. P. Balu, B.R.K. Bharath, B. Srikanth, B. Vamsi Krishna, P. Satvasheel, V.K. Hemanth, and S.N.D. Suresha Mrityunjay, Eco-Friendly Lightweight Filament Synthesis and Mechanical Characterization of Additively Manufactured Closed Cell Foams, Compos. Sci. Technol., 2019, https://doi.org/10.1016/j.compscitech.2019.107816

    Article  Google Scholar 

  22. S. Vadukumpully, J. Paul, N. Mahanta, and S. Valiyaveettil, Flexible Conductive Graphene/Poly(Vinyl Chloride) Composite Thin Films with High Mechanical Strength and Thermal Stability, Carbon N. Y., 2011, 49, p 198–205. https://doi.org/10.1016/j.carbon.2010.09.004

    Article  CAS  Google Scholar 

  23. A.A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, and C.N. Lau, Superior Thermal Conductivity of Single-Layer Graphene, Nano Lett., 2008, 8, p 902–907. https://doi.org/10.1021/nl0731872

    Article  CAS  Google Scholar 

  24. C. Lee, X. Wei, J.W. Kysar, and J. Hone, Measurement of the Elastic Properties and Intrinsic Strength of Monolayer Graphene, Science, 2008, 80(321), p 385–388. https://doi.org/10.1126/science.1157996

    Article  CAS  Google Scholar 

  25. M.D. Stoller, S. Park, Z. Yanwu, J. An, and R.S. Ruoff, Graphene-Based Ultracapacitors, Nano Lett., 2008, 8, p 3498–3502. https://doi.org/10.1021/nl802558y

    Article  CAS  Google Scholar 

  26. H. Pang, T. Chen, G. Zhang, B. Zeng, and Z.M. Li, An Electrically Conducting Polymer/Graphene Composite with a Very Low Percolation Threshold, Mater. Lett., 2010, 64, p 2226–2229. https://doi.org/10.1016/j.matlet.2010.07.001

    Article  CAS  Google Scholar 

  27. K. Kalaitzidou, H. Fukushima, and L.T. Drzal, A New Compounding Method for Exfoliated Graphite-Polypropylene Nanocomposites with Enhanced Flexural Properties and Lower Percolation Threshold, Compos. Sci. Technol., 2007, 67, p 2045–2051. https://doi.org/10.1016/j.compscitech

    Article  CAS  Google Scholar 

  28. S. Vadukumpully, J. Paul, N. Mahanta, and S. Valiyaveettil, Flexible Conductive Graphene/Poly(Vinyl Chloride) Composite Thin Films with High Mechanical Strength and Thermal Stability, Carbon, 2011, 49, p 198–205. https://doi.org/10.1016/j.carbon.2010.09.004

    Article  CAS  Google Scholar 

  29. S. Dul, L. Fambri, and A. Pegoretti, Fused Deposition Modelling with ABS–Graphene Nanocomposites, Compos. Part A, 2016, 85, p 181–191. https://doi.org/10.1016/j.compositesa.2016.03.013

    Article  CAS  Google Scholar 

  30. D. Zhang, B. Chi, B. Li, Z. Gao, Y. Du, J. Guo, and J. Wei, Fabrication of Highly Conductive Graphene Flexible Circuits by 3D Printing, Synth. Met., 2016, 217, p 79–86. https://doi.org/10.1016/j.synthmet.2016.03.014

    Article  CAS  Google Scholar 

  31. J. Bustillos, D. Montero, P. Nautiyal, A. Loganathan, and B.A. Boesl, Agarwal, Integration of Graphene in Poly(lactic) Acid by 3D Printing to Develop Creep and Wear-Resistant Hierarchical Nanocomposites, Compos. Polym., 2017, https://doi.org/10.1002/pc.24422

    Article  Google Scholar 

  32. A. Dorigato, V. Moretti, S. Dul, S.H. Unterberger, and A. Pegoretti, Electrically Conductive Nanocomposites for Fused Deposition Modelling, Synth. Met., 2017, 226, p 7–14. https://doi.org/10.1016/j.synthmet.2017.01.009

    Article  CAS  Google Scholar 

  33. P. Schmitz, L.G. Ecco, S. Dul, E.C.L. Pereir, B.G. Soares, G.M.O. Barra, and A. Pegoretti, Electromagnetic Interference Shielding Effectiveness of ABS Carbon-Based Composites Manufactured via Fused Deposition Modelling, Mater. Today Commun., 2018, 15, p 70–80

    Article  CAS  Google Scholar 

  34. N. Jayanth and P. Senthil, Application of 3D Printed ABS Based Conductive Carbon Black Composite Sensor in Void Fraction Measurement, Compos. B Eng., 2019, 159, p 224–230

    Article  Google Scholar 

  35. X. Wei, Jiang W. Li, Z. Gu, X. Wang, X. Zhang, and Z. Sun, 3D Printable Graphene Composite, Nat. Sci. Rep., 2015, https://doi.org/10.1038/srep11181

    Article  Google Scholar 

  36. J. Jyoti, A. Kumar, S.R. Dhakate, and B.P. Singh, Dielectric and Impedance Properties of Three Dimension Graphene Oxide-Carbon Nanotube Acrylonitrile Butadiene Styrene Hybrid Composites, Polym. Test., 2018, 68, p 456–466. https://doi.org/10.1016/j.polymertesting.2018.04.003

    Article  CAS  Google Scholar 

  37. H.K. Sezer and O. Eren, FDM 3D Printing of MWCNT Re-Inforced ABS Nano-Composite Parts with Enhanced Mechanical and Electrical Properties, J. Manuf. Process., 2019, 37, p 339–347. https://doi.org/10.1016/j.jmapro.2018.12.004

    Article  Google Scholar 

  38. F. Ning, W. Cong, J. Qiu, J. Wei, and S. Wang, Additive Manufacturing of Carbon fiber Reinforced Thermoplastic Composites using Fused Deposition Modeling, Compos. Part B Eng., 2015, 80, p 369–378. https://doi.org/10.1016/j.compositesb.2015.06.013

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Authors would like to thank Dr. Mirella Suchea, (IMT-Bucharest) for the SEM and XRD support.

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Petousis.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 3465 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vidakis, N., Maniadi, A., Petousis, M. et al. Mechanical and Electrical Properties Investigation of 3D-Printed Acrylonitrile–Butadiene–Styrene Graphene and Carbon Nanocomposites. J. of Materi Eng and Perform 29, 1909–1918 (2020). https://doi.org/10.1007/s11665-020-04689-x

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-020-04689-x

Keywords

Navigation