Skip to main content

Advertisement

Log in

Modeling Self-heating under Cyclic Loading in Fiber-Reinforced Polymer Composites

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

The temperature rise of fiber-reinforced polymer (FRP) composites caused by self-heating under cyclic loading significantly degrades the performance of composite structures during their service life. This study examines the cyclic responses in FRP composites, incorporating the effect of energy dissipation from the viscoelastic polymeric matrix on the microscopic and macroscopic performance of FRP composites. FRP composite models that consist of unidirectional fibers randomly distributed in a polymeric matrix are generated. A thermo-viscoelastic constitutive material model, which accounts for the energy dissipation and heat generation, is considered for the polymeric matrix, while a linear elastic response is considered for the fibers. The effects of loading directions, fiber volume fractions, voids, and different thermo-rheological behaviors of the polymer, on the hysteretic responses of the FRP composites, at the macroscopic and microscopic scales, are examined. A wider microscopic hysteresis loop was observed as compared to the macroscopic response. After a few minutes of cyclic loading, the substantial reductions in the stress amplitude are observed, which is associated with the stress relaxation and accelerated relaxation from the heat generation. The surface temperature of the FRP model due to heat generation increases at first cycles and then stabilizes, as experimentally observed in the literature. For HDPE/AS4 carbon fiber composite, at a frequency of 1 Hz, up to 30 and 8% reduction in stress magnitude was observed under transverse and axial cyclic loadings, respectively. This study provides an assessment of reductions in the load-carrying capacity of FRP composites under cyclic loadings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. M.N. Bureau and J. Denault, Fatigue Resistance of Continuous Glass Fiber/Polypropylene Composites: Temperature Dependence, Polym. Compos., 2004, 25(6), p 622–629

    Article  CAS  Google Scholar 

  2. H.-S. Chen, S.-F. Hwang, and H.-S. Chen, Accelerated Fatigue Properties of Unidirectional Carbon/Epoxy Composite Materials, Polym. Compos., 2006, 27(2), p 138–146

    Article  CAS  Google Scholar 

  3. R.M. Guedes, Creep and Fatigue Lifetime Prediction of Polymer Matrix Composites Based on Simple Cumulative Damage Laws, Compos. Part Appl. Sci. Manuf., 2008, 39(11), p 1716–1725

    Article  Google Scholar 

  4. R.M. Guedes, Durability of Polymer Matrix Composites: Viscoelastic Effect on Static and Fatigue Loading, Compos. Sci. Technol., 2007, 67(11–12), p 2574–2583

    Article  CAS  Google Scholar 

  5. I. Černý and R.M. Mayer, Evaluation of Static AND Fatigue Strength of Long Fiber GRP Composite Material Considering Moisture Effects, Compos. Struct., 2010, 92(9), p 2035–2038

    Article  Google Scholar 

  6. Y. Miyano, M. Nakada, and H. Cai, Formulation of Long-Term Creep and Fatigue Strengths of Polymer Composites Based on Accelerated Testing Methodology, J. Compos. Mater., 2008.

  7. M. Nakada and Y. Miyano, Accelerated Testing for Long-Term Fatigue Strength of Various FRP Laminates for Marine Use, Compos. Sci. Technol., 2009, 69(6), p 805–813

    Article  CAS  Google Scholar 

  8. V. Bellenger, A. Tcharkhtchi, and P. Castaing, Thermal and Mechanical Fatigue of a PA66/Glass Fibers Composite Material, Int. J. Fatigue, 2006, 28(10), p 1348–1352. https://doi.org/10.1016/j.ijfatigue.2006.02.031

    Article  CAS  Google Scholar 

  9. D. Rittel and Y. Rabin, An Investigation of the Heat Generated During Cyclic Loading of Two Glassy Polymers. Part II: Thermal Analysis, Mech. Mater., 2000, 32, p 149–159. https://doi.org/10.1016/S0167-6636(99)00052-6

    Article  Google Scholar 

  10. L. Toubal, M. Karama, and B. Lorrain, Damage Evolution and Infrared Thermography in Woven Composite Laminates Under Fatigue Loading, Int. J. Fatigue, 2006, 28(12), p 1867–1872. https://doi.org/10.1016/j.ijfatigue.2006.01.013

    Article  CAS  Google Scholar 

  11. J.W. Holmes and C. Cho, Experimental Observations of Frictional Heating in Fiber-Reinforced Ceramics, J. Am. Ceram. Soc., 1992, 75(4), p 929–938

    Article  CAS  Google Scholar 

  12. M.C. Lafarie-Frenot, C. Hénaff-Gardin, and D. Gamby, Matrix Cracking Induced by Cyclic Ply Stresses in Composite Laminates, Compos. Sci. Technol., 2001, 61(15), p 2327–2336. https://doi.org/10.1016/S0266-3538(01)00125-7

    Article  CAS  Google Scholar 

  13. A. Katunin, A. Wronkowicz, and M. Bilewicz, Evaluation of Critical Self-Heating Temperature of Composite Structures Based on Analysis of Microcrack Development, Compos. Theory Pract., 2017, 17(1), p 9–13

    CAS  Google Scholar 

  14. A. Katunin, Evaluation of Criticality of Self-Heating of Polymer Composites by Estimating the Heat Dissipation Rate, Mech. Compos. Mater., 2018, 54(1), p 53–60. https://doi.org/10.1007/s11029-018-9717-9

    Article  Google Scholar 

  15. A. Katunin, Domination of Self-Heating Effect During Fatigue of Polymeric Composites, Procedia Struct. Integr., 2017, 5, p 93–98

    Article  Google Scholar 

  16. A.H. Muliana and S. Sawant, Responses of Viscoelastic Polymer Composites with Temperature and Time Dependent Constituents, Acta Mech., 2009, 204(3–4), p 155–173

    Article  Google Scholar 

  17. J. Jeon, A. Muliana, and V. La Saponara, Thermal Stress and Deformation Analyses in Fiber Reinforced Polymer Composites Undergoing Heat Conduction and Mechanical Loading, Compos. Struct., 2014, 111, p 31–44

    Article  Google Scholar 

  18. J. Jeon, J. Kim, and A. Muliana, Modeling Time-Dependent and Inelastic Response of Fiber Reinforced Polymer Composites, Comput. Mater. Sci., 2013, 70, p 37–50

    Article  CAS  Google Scholar 

  19. B. Burks, J. Middleton, and M. Kumosa, Micromechanics Modeling of Fatigue Failure Mechanisms in a Hybrid Polymer Matrix Composite, Compos. Sci. Technol., 2012, 72(15), p 1863–1869. https://doi.org/10.1016/j.compscitech.2012.07.017

    Article  CAS  Google Scholar 

  20. A.R. Maligno, N.A. Warrior, and A.C. Long, Solids Effects of Inter-Fibre Spacing on Damage Evolution in Unidirectional (UD) fibre-reinforced composites, Eur. J. Mech. A Solids, 2009, 28(4), p 768–776. https://doi.org/10.1016/j.euromechsol.2008.10.009

    Article  Google Scholar 

  21. H. Mivehchi and A. Varvani-Farahani, The Effect of Temperature on Fatigue Strength and Cumulative Fatigue Damage of FRP Composites, Procedia Eng., 2010, 2(1), p 2011–2020. https://doi.org/10.1016/j.proeng.2010.03.216

    Article  Google Scholar 

  22. A. Katunin, A. Wronkowicz, M. Bilewicz, and D. Wachla, Criticality of Self-Heating in Degradation Processes of Polymeric Composites Subjected to Cyclic Loading: A Multiphysical Approach, Arch. Civ. Mech. Eng., 2017, 17(4), p 806–815. https://doi.org/10.1016/j.acme.2017.03.003

    Article  Google Scholar 

  23. A. Katunin and A. Wronkowicz, Characterization of Failure Mechanisms of Composite Structures Subjected to Fatigue Dominated by the Self-Heating Effect, Compos. Struct., 2017, 180, p 1–8. https://doi.org/10.1016/j.compstruct.2017.07.101

    Article  Google Scholar 

  24. A. Katunin, The conception of the Fatigue Model for Layered Composites Considering Thermal Effects, Arch. Civ. Mech. Eng., 2011, 11(2), p 333–343

    Article  Google Scholar 

  25. A. Katunin and A. Wronkowicz, Evolution of a Fracture Mechanism in A Polymeric Composite Subjected to Fatigue with the Self-Heating Effect, Procedia Struct. Integr., 2017, 5, p 416–421. https://doi.org/10.1016/j.prostr.2017.07.190

    Article  Google Scholar 

  26. K.A. Khan and A.H. Muliana, Fully Coupled Heat Conduction and Deformation Analyses of Nonlinear Viscoelastic Composites, Compos. Struct., 2012, 94(6), p 2025–2037. https://doi.org/10.1016/j.compstruct.2012.01.010

    Article  Google Scholar 

  27. K. A. Khan, A. H. Muliana, K. R. Rajagopal, and A. Wineman, On Viscoelastic Beams Undergoing Cyclic Loading: Determining the Onset of Structural Instabilities. Int. J. Non-Linear Mech., 2017.

  28. Hexcel, “HexTow AS4,” 2016. https://www.hexcel.com/Resources/DataSheets/Carbon-Fiber-Data-Sheets/AS4.pdf. Accessed 01 Jan 2016.

  29. J. Segurado and J. Llorca, A Numerical Approximation to the Elastic Properties of Sphere-Reinforced Composites, J. Mech. Phys. Solids, 2002, 50(10), p 2107–2121

    Article  CAS  Google Scholar 

  30. M. D. Ly, Analyzing the Effect of Energy Dissipation on Thermo-Mechanical Responses of Viscoelastic Fiber Reinforced Composite using Finite Element Method, Thesis, 2017.

  31. J.D. Ferry and H.S. Myers, Viscoelastic Properties of Polymers, J. Electrochem. Soc., 1961, 108(7), p 142C–143C

    Article  Google Scholar 

  32. A.C. Pipkin, The Relaxed Energy Density for Isotropic Elastic Membranes, IMA J. Appl. Math., 1986, 36(1), p 85–99

    Article  Google Scholar 

  33. R.A. Schapery, Nonlinear Viscoelastic and Viscoplastic Constitutive Equations Based on Thermodynamics, Mech. Time-Depend. Mater., 1997, 1(2), p 209–240. https://doi.org/10.1023/A:1009767812821

    Article  Google Scholar 

  34. K.A. Khan and A.H. Muliana, Fully Coupled Heat Conduction and Deformation Analyses of Visco-Elastic Solids, Mech. Time-Depend. Mater., 2012, 16(4), p 461–489. https://doi.org/10.1007/s11043-012-9172-2

    Article  Google Scholar 

  35. P.S. Souza, E.F. Rodrigues, J.M.C. Prêta, S.A.S. Goulart, and D.R. Mulinari, Mechanical Properties of HDPE/Textile Fibers Composites, Procedia Eng., 2011, 10, p 2040–2045. https://doi.org/10.1016/j.proeng.2011.04.338

    Article  CAS  Google Scholar 

  36. R. Huang, X. Xu, S. Lee, Y. Zhang, B.-J. Kim, and Q. Wu, High Density Polyethylene Composites Reinforced with Hybrid Inorganic Fillers: Morphology, Mechanical and Thermal Expansion Performance, Materials, 2013, 6(9), p 4122–4138. https://doi.org/10.3390/ma6094122

    Article  CAS  Google Scholar 

  37. S. Charoenvai, Durian Peels Fiber and Recycled HDPE Composites Obtained by Extrusion, Energy Procedia, 2014, 56, p 539–546. https://doi.org/10.1016/j.egypro.2014.07.190

    Article  CAS  Google Scholar 

  38. S. Singh, D. Deepak, L. Aggarwal, and V.K. Gupta, Tensile and Flexural Behavior of Hemp Fiber Reinforced Virgin-recycled HDPE Matrix Composites, Procedia Mater. Sci., 2014, 6, p 1696–1702. https://doi.org/10.1016/j.mspro.2014.07.155

    Article  CAS  Google Scholar 

  39. D.R. Mulinari, A.J. Marina, and G.S. Lopes, Mechanical Properties of the Palm Fibers Reinforced HDPE Composites, World Acad. Sci. Eng. Technol. Int. J. Chem. Mol. Nucl. Mater. Metall. Eng., 2015, 9(7), p 903–906

    Google Scholar 

  40. A. Blaise, S. André, P. Delobelle, Y. Meshaka, and C. Cunat, Identification of the True Elastic Modulus of High Density Polyethylene From Tensile Tests Using an Appropriate Reduced Model of the Elastoviscoplastic Behavior. ArXiv12064268 Cond-Mat Physicsphysics, 2012.

  41. J. Lai and A. Bakker, An Integral Constitutive Equation for Nonlinear Plasto-Viscoelastic Behavior of High-Density Polyethylene, Polym. Eng. Sci., 1995, 35(17), p 1339–1347. https://doi.org/10.1002/pen.760351703

    Article  CAS  Google Scholar 

  42. A. Dorigato, A. Pegoretti, M. Messori, and P. Fabbri, in Viscoelastic and Fracture Behaviour if High Density Polyethylene Titania Micro and Nanocomposites, Green Park Resort Tirrenia (PI) 9-12 Giugno, 2009.

  43. A. Muliana and K.A. Khan, A Time-Integration Algorithm for Thermo-Rheologically Complex Polymers, Comput. Mater. Sci., 2008, 41(4), p 576–588. https://doi.org/10.1016/j.commatsci.2007.05.021

    Article  CAS  Google Scholar 

  44. X. Tong, X. Chen, J. Xu, Y. Zheng, and S. Zhi, The Heat Build-Up of a Polymer Matrix Composite Under Cyclic Loading: Experimental Assessment and Numerical Simulation, Int. J. Fatigue, 2018, 116, p 323–333

    Article  CAS  Google Scholar 

Download references

Acknowledgment

This study was supported by the National Science Foundation (CMMI-1266037) and the Office of Naval Research (N00014-13-1-0604).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kamran A. Khan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ly, M., Khan, K.A. & Muliana, A. Modeling Self-heating under Cyclic Loading in Fiber-Reinforced Polymer Composites. J. of Materi Eng and Perform 29, 1321–1335 (2020). https://doi.org/10.1007/s11665-020-04663-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-020-04663-7

Keywords

Navigation