Skip to main content

Advertisement

Log in

Effects of High-Temperature Deep Rolling on Fatigue, Work Hardening, and Residual Stress Relaxation of Martensitic Stainless Steel AISI 420

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

The deep-rolling, mechanical surface treatment was modified by applying heat during operation on the martensitic stainless steel AISI 420. Fatigue performance of the high-temperature deep-rolled condition was investigated and compared with the non-surface-treated and room-temperature deep-rolled conditions. Thermal and mechanical relaxation behaviors of residual stresses and work-hardening states were investigated. Annealing processes were carried out at a temperature range of 300-600 °C, with soaking times between 0.1 and 104 min for thermal relaxation. Fatigue tests were carried out at given stress amplitudes of 517-600 MPa, with the different number of cycles for the mechanical relaxation. The residual stresses and work-hardening states were determined using x-ray diffraction with the sin2Ψ method. It was found that the thermal relaxation can be described with the Zener–Wert–Avrami function. The relaxation mechanism was changed from the volume diffusion of the room-temperature deep-rolled condition to the dislocation-cored diffusion of the high-temperature deep-rolled condition. The mechanical relaxation of compressive residual stresses was higher than that of the work-hardening states. The residual stresses of the high-temperature deep-rolled condition are more stable than those of the room-temperature deep-rolled condition under cyclic loading.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. H. Chandler, Heat Treater’s Guide: Practices And Procedures for Irons and Steels, 2nd ed., Ohio, ASM International, 1995

    Google Scholar 

  2. B. Abbasi-Khazaei and A. Mollaahmadi, Rapid Tempering of Martensitic Stainless Steel AISI420: Microstructure, Mechanical and Corrosion Properties, J. Mater. Eng. Perform., 2017, 26, p 1626–1633. https://doi.org/10.1007/s11665-017-2605-y

    Article  CAS  Google Scholar 

  3. L.D. Barlow and M. Du Toit, Effect of Austenitizing Heat Treatment on the Microstructure and Hardness of Martensitic Stainless Steel AISI, 420, J. Mater. Eng. Perform., 2012, 21, p 1327–1336. https://doi.org/10.1007/s11665-011-0043-9

    Article  CAS  Google Scholar 

  4. W. Zinn and B. Scholtes, Mechanical Surface Treatments of Lightweight Materials—Effects on Fatigue Strength and Near-Surface Microstructures, J. Mater. Eng. Perform., 1999, 8, p 145–151. https://doi.org/10.1361/105994999770346972

    Article  CAS  Google Scholar 

  5. V. Schulze, Modern Mechanical Surface Treatment: States, Stability, Effects, Wiley, Weinheim, 2006

    Google Scholar 

  6. P. Juijerm and I. Altenberger, Fatigue Performance Enhancement of Steel Using Mechanical Surface Treatment, J. Met. Mater. Mine, 2007, 17, p 59–65

    CAS  Google Scholar 

  7. G.R. Leverant, B.S. Langer, A. Yuen, and S.W. Hopkins, Surface Residual Stresses, Surface Topography and the Fatigue Behavior of Ti-6AI-4V, Metall. Trans. A, 1979, 10, p 251–257. https://doi.org/10.1007/BF02817635

    Article  Google Scholar 

  8. E.R. De Los Rios, A. Walley, M.T. Milan, and G. Hammersley, Fatigue Crack Initiation and Propagation on Shot-Peened Surfaces in A316 Stainless Steel, Int. J. Fatigue, 1995, 17, p 493–499. https://doi.org/10.1016/0142-1123(95)00044-t

    Article  CAS  Google Scholar 

  9. J.D. Almer, J.B. Cohen, and B. Moran, The Effects of Residual Macrostresses and Microstresses on Fatigue Crack Initiation, Mater. Sci. Eng. A Struct., 2000, 284, p 268–279. https://doi.org/10.1016/S0921-5093(99),00779-0

    Article  Google Scholar 

  10. A. Cherif, Y. Pyoun, and B. Scholtes, Effects of Ultrasonic Nanocrystal Surface Modification (UNSM) on Residual Stress State and Fatigue Strength of AISI, 304, J. Mater. Eng. Perform., 2010, 19, p 282–286. https://doi.org/10.1007/s11665-009-9445-3

    Article  CAS  Google Scholar 

  11. Q. Feng, C. Jiang, and Z. Xu, Residual Stress Relaxation of Shot-Peened Deformation Surface Layer on Duplex Stainless Steel Under Applied Loading, J. Mater. Eng. Perform., 2014, 23, p 408–412. https://doi.org/10.1007/s11665-013-0764-z

    Article  CAS  Google Scholar 

  12. E. Qin, G. Chen, Z. Tan, and S. Wu, Shot Peening and Thermal Stress Relaxation in 17-4 PH Stainless Steel, J. Mater. Eng. Perform., 2015, 24, p 4578–4583. https://doi.org/10.1007/s11665-015-1761-1

    Article  CAS  Google Scholar 

  13. A. Telang, T. Gnäupel-Herold, A. Gill, and V.K. Vasudevan, Effect of Applied Stress and Temperature on Residual Stresses Induced by Peening Surface Treatments in Alloy 600, J. Mater. Eng. Perform., 2018, 27, p 2796–2804. https://doi.org/10.1007/s11665-018-3371-1

    Article  CAS  Google Scholar 

  14. V. Schulze, O. Vöhringer, and E. Macherauch, Thermal Relaxation of Shot Peening Induced Residual Stresses in a Quenched and Tempered Steel 42CRMo, in Proceedings of the 5th International Conference on Shot Peening, ed. by D. Kirk (Oxford, England), pp. 264–273, Coventry University, Sept 13–17 1993

  15. B. Eigenmann, V. Schulze, and O. Vohringer, Surface Residual Stress Relaxation in Steels by Thermal or Mechanical Treatment, in Proceedings of the 4th International Conference on Residual Stresses, ed. by M.R. James (Baltimore, Maryland), pp. 598–607, Society Experimental Mechanics, June 8–10 1994

  16. H. Holzapfel, V. Schulze, O. Vöhringer, and E. Macherauch, Residual Stress Relaxation in an AISI, 4140 Steel Due to Quasistatic and Cyclic Loading at Higher Temperatures, Mater. Sci. Eng. A Struct., 1998, 248, p 9–18. https://doi.org/10.1016/S0921-5093(98)00522-X

    Article  Google Scholar 

  17. P.S. Prevéy, The effect of cold work on the thermal stability of residual compression in surface enhanced IN718, in Proceedings of the 20th ASM Materials Solutions Conference and Exposition (Saint Louis, US), Oct 10–12 2000

  18. M.A.S. Torres and H.J.C. Voorwald, An Evaluation of Shot Peening, Residual Stress and Stress Relaxation on the Fatigue Life of AISI, 4340 Steel, Int. J. Fatigue, 2002, 24, p 877–886. https://doi.org/10.1016/S0142-1123(01),00205-5

    Article  CAS  Google Scholar 

  19. H. Lee and S. Mall, Stress Relaxation Behavior of Shot-Peened Ti-6Al-4 V Under Fretting Fatigue at Elevated Temperature, Mater. Sci. Eng. A Struct., 2004, 366, p 412–420. https://doi.org/10.1016/j.msea.2003.09.064

    Article  CAS  Google Scholar 

  20. I. Nikitin and M. Besel, Residual Stress Relaxation of Deep-Rolled Austenitic Steel, Scripta Mater, 2008, 58, p 239–242. https://doi.org/10.1016/j.scriptamat.2007.09.045

    Article  CAS  Google Scholar 

  21. R. John, D.J. Buchanan, M.J. Caton, and S.K. Jha, Stability of Shot Peen Residual Stresses in IN100 Subjected to Creep and Fatigue Loading, Procedia Eng., 2010, 2, p 1887–1893. https://doi.org/10.1016/j.proeng.2010.03.203

    Article  Google Scholar 

  22. R.E. Reed-Hill and R. Abbaschian, Physical Metallurgy Principles, 3rd ed., PWS-KENT Publishing Company, Boston, 1994

    Google Scholar 

  23. I. Altenberger, I. Nikitin, and B. Scholtes, Static and dynamic strain aging of deep-rolled plain carbon steel SAE 1045 for optimized fatigue strength, in Proceedings of the 9th International Conference on Shot Peening, eds. by V. Schulze and A. Niku-Lari (Paris, France), pp. 253–260, IITT-International, Sept 6–9 2005

  24. P. Juijerm, Fatigue Behavior and Residual Stress Stability of Deep-Rolled Aluminium Alloys AA5083 and AA6110 at Elevated Temperature, Kassel University Press, Kassel, 2006

    Google Scholar 

  25. D. Löhe and O. Vöhringer, Stability of Residual Stresses, Handbook of Residual Stress and Deformation of Steel, G. Totten, M. Howes, and T. Inoue, Ed., ASM International, Cleveland, 2002, p 54–69

    Google Scholar 

  26. A. Wick, V. Schulze, and O. Vöhringer, Effects of Warm Peening on Fatigue Life and Relaxation Behaviour of Residual Stresses in AISI, 4140 Steel, Mater. Sci. Eng. A Struct., 2000, 293, p 191–197. https://doi.org/10.1016/S0921-5093(00),01035-2

    Article  Google Scholar 

  27. R. Menig, V. Schulze, and O. Vöhringer, Optimized Warm Peening of the Quenched and Tempered Steel AISI, 4140, Mater. Sci. Eng. A Struct., 2002, 335, p 198–206. https://doi.org/10.1016/S0921-5093(01),01915-3

    Article  Google Scholar 

  28. I. Altenberger and B. Scholtes, Improvement of Fatigue Behaviour of Mechanically Surface Treated Materials by Annealing, Scripta Mater., 1999, 41, p 873–881. https://doi.org/10.1016/S1359-6462(99),00222-5

    Article  CAS  Google Scholar 

  29. P. Juijerm and I. Altenberger, Effect of High-Temperature Deep Rolling on Cyclic Deformation Behavior of Solution-Heat-Treated Al-Mg-Si-Cu alloy, Scripta Mater., 2007, 56, p 285–288. https://doi.org/10.1016/j.scriptamat.2006.10.017

    Article  CAS  Google Scholar 

  30. K. Zhan, C.H. Jiang, and V. Ji, Residual Stress Relaxation of Shot Peened Deformation Surface Layer on S30432 Austenite Steel under Applied Loading, Mater. Trans., 2012, 53, p 1578–1581. https://doi.org/10.2320/matertrans.M2012111

    Article  CAS  Google Scholar 

  31. P. Fu and C. Jiang, Residual Stress Relaxation and Micro-Structural Development of the Surface Layer of 18CrNiMo7-6 Steel After Shot Peening During Isothermal Annealing, Mater. Des., 2014, 56, p 1034–1038. https://doi.org/10.1016/j.matdes.2013.12.011

    Article  CAS  Google Scholar 

  32. P. Jansawat, High Temperature Deep Rolling on Stainless Steel AISI, 420, Kasetsart University, Bangkok, 2013 (in Thai)

    Google Scholar 

  33. T. Nimitbunchar, Effects of Heat Treatment on Residual Stress and Fatigue Properties of Deep-Rolled Martensitic Stainless Steel AISI, 420, Kasetsart University, Bangkok, 2014 (in Thai)

    Google Scholar 

  34. M.J. Molaei and A. Ekrami, The Effect of Dynamic Strain Aging on Subsequent Mechanical Properties of Dual-Phase Steels, J. Mater. Eng. Perform., 2010, 19, p 607–610. https://doi.org/10.1007/s11665-009-9429-3

    Article  CAS  Google Scholar 

  35. W. Wei, Y. Feng, L. Han, J. Zhang, and H. Wang, High-Temperature Low-Cycle Fatigue Behavior of HS80H Ferritic–Martensitic Steel Under Dynamic Strain Aging, J. Mater. Eng. Perform., 2018, 27, p 6629–6635. https://doi.org/10.1007/s11665-018-3726-7

    Article  CAS  Google Scholar 

  36. E. Kerscher, K.H. Lang, O. Vöhringer, and D. Löhe, Increasing the Fatigue Limit of a Bearing Steel by Dynamic Strain Ageing, Int. J. Fatigue, 2008, 30, p 1838–1842. https://doi.org/10.1016/j.ijfatigue.2008.02.003

    Article  CAS  Google Scholar 

  37. W. Wei, Y. Feng, L. Han, Q. Zhang, and J. Zhang, Cyclic Hardening and Dynamic Strain Aging During Low-Cycle Fatigue of Cr-Mo Tempered Martensitic Steel at Elevated Temperatures, Mater. Sci. Eng. A Struct., 2018, 734, p 20–26. https://doi.org/10.1016/j.msea.2018.07.084

    Article  CAS  Google Scholar 

  38. J. Huang, Z. Wang, K. Bian, and C. Jiang, Thermal Relaxation of Residual Stresses in Shot Peened Surface Layer of SiCw/Al Composite, J. Mater. Eng. Perform., 2012, 21, p 915–919. https://doi.org/10.1007/s11665-011-9982-4

    Article  CAS  Google Scholar 

  39. A. Madariaga, J. Aperribay, P.J. Arrazola, J.A. Esnaola, E. Hormaetxe, A. Garay, and K. Ostolaza, Effect of Thermal Annealing on Machining-Induced Residual Stresses in Inconel 718, J. Mater. Eng. Perform., 2017, 26, p 3728–3738. https://doi.org/10.1007/s11665-017-2824-2

    Article  CAS  Google Scholar 

  40. Z. Zhou, S. Bhamare, G. Ramakrishnan, S.R. Mannava, K. Langer, Y. Wen, D. Qian, and V.K. Vasudevan, Thermal Relaxation of Residual Stress in Laser Shock Peened Ti-6Al-4 V Alloy, Surf. Coat. Technol., 2012, 206, p 4619–4627. https://doi.org/10.1016/j.surfcoat.2012.05.022

    Article  CAS  Google Scholar 

  41. D. Cai, P. Nie, J. Shan, W. Liu, M. Yao, and Y. Gao, Precipitation and Residual Stress Relaxation Kinetics in Shot-Peened Inconel 718, J. Mater. Eng. Perform., 2006, 15, p 614–617. https://doi.org/10.1361/105994906X124613

    Article  CAS  Google Scholar 

  42. X.D. Ren, W.F. Zhou, S.D. Xu, S.Q. Yuan, N.F. Ren, Y. Wang, and Q.B. Zhan, Iron GH2036 Alloy Residual Stress Thermal Relaxation Behavior in Laser Shock Processing, Opt. Laser Technol., 2015, 74, p 29–35. https://doi.org/10.1016/j.optlastec.2015.05.009

    Article  CAS  Google Scholar 

  43. S. Xu, S. Huang, X. Meng, J. Sheng, H. Zhang, and J. Zhou, Thermal Evolution of Residual Stress in IN718 Alloy Subjected to Laser Peening, Opt. Lasers Eng., 2017, 94, p 70–75. https://doi.org/10.1016/j.optlaseng.2017.03.004

    Article  Google Scholar 

  44. M.C. Berger and J.K. Gregory, Residual Stress Relaxation in Shot Peened Ti-metal 21s, Mater. Sci. Eng. A Struct., 1999, 263, p 200–204. https://doi.org/10.1016/S0921-5093(98),01165-4

    Article  Google Scholar 

  45. M. Chen, H. Liu, L. Wang, Z. Xu, V. Ji, and C. Jiang, Investigation on the Thermostability of Residual Stress and Microstructure in Shot Peened SAF 2507 Duplex Stainless Steel, Vacuum, 2018, 153, p 145–153. https://doi.org/10.1016/j.vacuum.2018.04.015

    Article  CAS  Google Scholar 

  46. A. Telang, A.S. Gill, S.R. Mannava, D. Qian, and V.K. Vasudevan, Effect of Temperature on Microstructure and Residual Stresses Induced by Surface Treatments in Inconel 718 SPF, Surf. Coat. Technol., 2018, 344, p 93–101. https://doi.org/10.1016/j.surfcoat.2018.02.094

    Article  CAS  Google Scholar 

  47. C. Wang, C. Jiang, and V. Ji, Thermal Stability of Residual Stresses and Work Hardening of Shot Peened Tungsten Cemented Carbide, J. Mater. Process. Technol., 2017, 240, p 98–103. https://doi.org/10.1016/j.jmatprotec.2016.09.013

    Article  CAS  Google Scholar 

  48. A. Medvedeva, J. Bergström, S. Gunnarsson, and P. Krakhmalev, Thermally Activated Relaxation Behaviour of Shot-Peened Tool Steels for Cutting Tool Body Applications, Mater. Sci. Eng. A Struct., 2011, 528, p 1773–1779. https://doi.org/10.1016/j.msea.2010.11.010

    Article  CAS  Google Scholar 

  49. Z. Wang, Y. Chen, and C. Jiang, Thermal Relaxation Behavior of Residual Stress in Laser Hardened 17-4PH Steel After Shot Peening Treatment, Appl. Surf. Sci., 2011, 257, p 9830–9835. https://doi.org/10.1016/j.apsusc.2011.06.032

    Article  CAS  Google Scholar 

  50. J.C. Kim, S.K. Cheong, and H. Noguchi, Residual Stress Relaxation and Low- and High-Cycle Fatigue Behavior of Shot-Peened Medium-Carbon Steel, Int. J. Fatigue, 2013, 56, p 114–122. https://doi.org/10.1016/j.ijfatigue.2013.07.001

    Article  CAS  Google Scholar 

  51. K. Dalaei, B. Karlsson, and L.-E. Svensson, Stability of Shot Peening Induced Residual Stresses and Their Influence on Fatigue Lifetime, Mater. Sci. Eng. A Struct., 2011, 528, p 1008–1015. https://doi.org/10.1016/j.msea.2010.09.050

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to gratefully thank the Faculty of Engineering, Kasetsart University, Thailand, for its financial support for L. Angkurarach. Thanks are also due to P. Jansawat for the support of some of our experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Juijerm.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Angkurarach, L., Juijerm, P. Effects of High-Temperature Deep Rolling on Fatigue, Work Hardening, and Residual Stress Relaxation of Martensitic Stainless Steel AISI 420. J. of Materi Eng and Perform 29, 1416–1423 (2020). https://doi.org/10.1007/s11665-020-04656-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-020-04656-6

Keywords

Navigation