Skip to main content
Log in

Constitutive Modeling of the Hot Deformation Behavior in 6082 Aluminum Alloy

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

The hot compressive tests of 6082 aluminum alloy were conducted on a Gleeble-3500 thermomechanical simulator at temperature ranges of 380-530 °C and strain rate range of 0.01-10 s−1. The constitutive analysis and microstructural evolution of the alloy were investigated. It was indicated that the peak stress increased with increasing strain rate and decreasing temperature. Dynamic recovery and dynamic recrystallization lead to the softening behavior of the alloy. In order to characterize the flow behavior of this alloy, some models were established based on the experimental data including the phenomenological Arrhenius-type model, the physically based Estrin and Mecking (EM) model for work hardening and dynamic recovery, and the EM model, which was combined with the Avrami equation for dynamic recrystallization. An artificial neural network model was also established to predict the flow stress. The results indicate that the Arrhenius-type model is more simple and more efficient than the EM + Avrami model. Moreover, the well-trained ANN model has the best predicting performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. J. Hirsch, Aluminium Alloys for Automotive Application, Mater. Sci. Forum, 1997, 242, p 33–50

    Article  Google Scholar 

  2. J.H. Chen, E. Costan, M. Huis, Q. Xu, and H.W. Zandbergen, Atomic Pillar-Based Nanoprecipitates Strengthen AlMgSi Alloys, Science, 2006, 312, p 416–419

    Article  Google Scholar 

  3. L.P. Troeger and E.A. Starke Jr., Microstructural and Mechanical Characterization of a Superplastic 6xxx Aluminum Alloy, Mater. Sci. Eng., A, 2000, 277, p 102–113

    Article  Google Scholar 

  4. B. Mirzakhani and Y. Payandeh, Combination of Sever Plastic Deformation and Precipitation Hardening Processes Affecting the Mechanical Properties in Al-Mg-Si Alloy, Mater. Des., 2015, 68, p 127–133

    Article  Google Scholar 

  5. C.N. Panagopoulos, E.P. Georgiou, and A.G. Gavras, Corrosion and Wear of 6082 Aluminum Alloy, Tribol. Int., 2009, 42, p 886–889

    Article  Google Scholar 

  6. A.R. Eivani and J. Zhou, Application of Physical and Numerical Simulations for Interpretation of Peripheral Coarse Grain Structure During Hot Extrusion of AA7020 Aluminum Alloy, J. Alloys Compd., 2017, 725, p 41–53

    Article  Google Scholar 

  7. N. Kumar, S. Goel, R. Jayaganthan, and G.M. Owolabi, The Influence of Metallurgical Factors on Low Cycle Fatigue Behavior of Ultra-Fine Grained 6082 Al Alloy, Int. J. Fatigue, 2018, 110, p 130–143

    Article  Google Scholar 

  8. V. Kumar and D. Kumar, Investigation of Tensile Behaviour of Cryorolled and Room Temperature Rolled 6082 Al Alloy, Mater. Sci. Eng., A, 2017, 691, p 211–217

    Article  Google Scholar 

  9. X. Kai, C. Chen, X. Sun, C. Wang, and Y. Zhao, Hot Deformation Behavior and Optimization of Processing Parameters of a Typical High-Strength Al-Mg-Si Alloy, Mater. Sci., 2016, 90, p 1151–1158

    Google Scholar 

  10. G. Chunlei, X. Yongdong, and W. Mengjun, Prediction of the Flow Stress of Al6061 at Hot Deformation Conditions, Mater. Sci. Eng., A, 2011, 528, p 4199–4203

    Article  Google Scholar 

  11. L. De Pari Jr. and W.Z. Misiolek, Theoretical Predictions and Experimental Verification of Surface Grain Structure Evolution for AA6061 During Hot Rolling, Acta Mater., 2008, 56, p 6174–6185

    Article  Google Scholar 

  12. M.R. Rokni, A. Zarei-Hanzaki, A.A. Roostaei, and H.R. Abedi, An Investigation into the Hot Deformation Characteristics of 7075 Aluminum Alloy, Mater. Des., 2011, 32, p 2339–2344

    Article  Google Scholar 

  13. Y.C. Lin and X.M. Chen, A Critical Review of Experimental Results and Constitutive Descriptions for Metals and Alloys in Hot Working, Mater. Des., 2011, 32, p 1733–1759

    Article  Google Scholar 

  14. D. Trimble and G.E.O. Donnell, Constitutive Modelling for Elevated Temperature Flow Behaviour of AA7075, Mater. Des., 2015, 76, p 150–168

    Article  Google Scholar 

  15. L. Wang, F. Liu, Q. Zuo, and C.F. Chen, Prediction of Flow Stress for N08028 Alloy Under Hot Working Conditions, Mater. Sci., 2013, 47, p 737–745

    Google Scholar 

  16. H. Zhang, G. Chen, Q. Chen, F. Han, and Z. Zhao, A Physically-Based Constitutive Modelling of a High Strength Aluminum Alloy at Hot Working Conditions, J. Alloys Compd., 2018, 743, p 283–293

    Article  Google Scholar 

  17. R. Bobbili, B. VenkataRamudu, and V. Madhu, A Physically-Based Constitutive Model for Hot Deformation of Ti-10-2-3 Alloy, J. Alloys Compd., 2017, 696, p 295–303

    Article  Google Scholar 

  18. B. Li, Q. Pan, and Z. Yin, Microstructural Evolution and Constitutive Relationship of Al-Zn-Mg Alloy Containing Small Amount of Sc and Zr During Hot Deformation Based on Arrhenius-Type and Artificial Neural Network Models, J. Alloys Compd., 2014, 584, p 406–416

    Article  Google Scholar 

  19. H.R.R. Ashtiani and P. Shahsavari, A Comparative Study on the Phenomenological and Artificial Neural Network Models to Predict Hot Deformation Behavior of AlCuMgPb Alloy, J. Alloys Compd., 2016, 687, p 263–273

    Article  Google Scholar 

  20. D. Odoh, Y. Mahmoodkhani, and M. Wells, Effect of Alloy Composition on Hot Deformation Behavior of Some Al-Mg-Si Alloys, Vacuum, 2018, 149, p 248–255

    Article  Google Scholar 

  21. M.E. Mehtedi, S. Spigarelli, F. Gabrielli, and L. Donati, Comparison Study of Constitutive Models in Predicting the Hot Deformation Behavior of AA6060 and AA6063 Aluminium Alloys, Mater. Today Proc., 2015, 2, p 4732–4739

    Article  Google Scholar 

  22. K. Singh, S.K. Rajput, and Y. Mehta, Modeling of the Hot Deformation Behavior of a High Phosphorus Steel Using Artificial Neural Networks, Mater. Discov., 2016, 6, p 1–8

    Article  Google Scholar 

  23. M.C. Dixit, N. Srivastava, and S.K. Rajput, Modeling of Flow Stress of AA6061 Under Hot Compression Using Artificial Neural Network, Mater. Today Proc., 2017, 4, p 1964–1971

    Article  Google Scholar 

  24. B.K. Raghunath, K. Raghukandan, R. Karthikeyan, K. Palanikumar, U.T.S. Pillai, and R.A. Gandhi, Flow Stress Modeling of AZ91 Magnesium Alloys at Elevated Temperature, J. Alloys Compd., 2011, 509, p 4992–4998

    Article  Google Scholar 

  25. H. Sun, Y. Zhang, A.A. Volinsky, B. Wang, B. Tian, K. Song, Z. Chai, and Y. Liu, Effects of Ag Addition on Hot Deformation Behavior of Cu-Ni-Si Alloys, Adv. Eng. Mater., 2017, 19, p 1600607

    Article  Google Scholar 

  26. E.S. Puchi-Cabrera, M.H. Staia, J.D. Guérin, J. Lesage, M. Dubar, and D. Chicot, An Experimental Analysis and Modeling of the Work-Softening Transient Due to Dynamic Recrystallization, Int. J. Plast, 2014, 54, p 113–131

    Article  Google Scholar 

  27. N. Dudova, A. Belyakov, T. Sakai, and R. Kaibyshev, Dynamic Recrystallization Mechanisms Operating in a Ni-20%Cr Alloy Under Hot-to-Warm Working, Acta Mater., 2010, 58, p 3624–3632

    Article  Google Scholar 

  28. T. Zhong, K.P. Rao, Y.V.R.K. Prasad, F. Zhao, and M. Gupta, Hot Deformation Mechanisms, Microstructure and Texture Evolution in Extruded AZ31-Nano-alumina Composite, Mater. Sci. Eng., A, 2014, 589, p 41–49

    Article  Google Scholar 

  29. D. Samantaray, S. Mandal, C. Phaniraj, and A.K. Bhaduri, Flow Behavior and Microstructural Evolution During Hot Deformation of AISI, Type 316 L(N) Austenitic Stainless Steel, Mater. Sci. Eng., A, 2011, 528, p 8565–8572

    Article  Google Scholar 

  30. Y. Han, G. Liu, D. Zou, R. Liu, and G. Qiao, Deformation Behavior and Microstructural Evolution of As-Cast 904L Austenitic Stainless Steel During Hot Compression, Mater. Sci. Eng., A, 2013, 565, p 342–350

    Article  Google Scholar 

  31. Y. Deng, Z. Yin, and J. Huang, Hot Deformation Behavior and Microstructural Evolution of Homogenized 7050 Aluminum Alloy During Compression at Elevated Temperature, Mater. Sci. Eng. A, 2011, 528, p 1780–1786

    Article  Google Scholar 

  32. D. Xiao, X. Peng, X. Liang, Y. Deng, G. Xu, and Z. Yin, Research on Constitutive Models and Hot Workability of As-Homogenized Al-Zn-Mg-Cu Alloy During Isothermal Compression, Met. Mater. Int., 2017, 23, p 591–602

    Article  Google Scholar 

  33. H.J. McQueen and N.D. Ryan, Constitutive Analysis in Hot Working, Mater. Sci. Eng. A, 2002, 322, p 43–63.

    Article  Google Scholar 

  34. S. Spigarelli, E. Evangelista, and H.J. McQueen, Study of Hot Workability of a Heat Treated AA6082 Aluminum Alloy, Scripta Mater., 2003, 49, p 179–183.

    Article  Google Scholar 

  35. Z. Cai, F. Chen, and J. Guo, Constitutive Model for Elevated Temperature Flow Stress of AZ41M Magnesium Alloy Considering the Compensation of Strain, J. Alloys Compd., 2015, 648, p 215–222.

    Article  Google Scholar 

  36. P. Changizian, A. Zarei-Hanzaki, and A.A. Roostaei, The High Temperature Flow Behavior Modeling of AZ81 Magnesium Alloy Considering Strain Effects, Mater. Des., 2012, 39, p 384–389.

    Article  Google Scholar 

  37. J.J. Jonas, X. Quelennec, L. Jiang, and É. Martin, The Avrami Kinetics of Dynamic Recrystallization, Acta Mater., 2009, 57, p 2748–2756

    Article  Google Scholar 

  38. U.F. Kocks, Laws for Working-Hardening and Low-Temperature Creep, J. Eng. Mater. Technol., 1976, 98, p 76–85

    Article  Google Scholar 

  39. H.M.Y. Estrin, A Unified Phenomenological Description of Work Hardening and Creep Based on One-Parameter Models, Acta Metall., 1984, 32, p 57–70

    Article  Google Scholar 

  40. P.M. Souza, H. Beladi, R. Singh, B. Rolfe, and P.D. Hodgson, Constitutive Analysis of Hot Deformation Behavior of a Ti6Al4V Alloy Using Physical Based Model, Mater. Sci. Eng. A, 2015, 648, p 265–273

    Article  Google Scholar 

  41. N. Haghdadi, D. Martin, and P. Hodgson, Physically-Based Constitutive Modelling of Hot Deformation Behavior in a LDX 2101 Duplex Stainless Steel, Mater. Des., 2016, 106, p 420–427

    Article  Google Scholar 

  42. Y. Han, G. Qiao, J. Sun, and D. Zou, A Comparative Study on Constitutive Relationship of As-Cast 904L Austenitic Stainless Steel During Hot Deformation Based on Arrhenius-Type and Artificial Neural Network Models, Comput. Mater. Sci., 2013, 67, p 93–103

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge the financial support of the Science and Technology Major Project of Hunan Province (2016GK1004) and the Science and Technology Key Project of Guangdong Province (2016B090931001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qinglin Pan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, K., Pan, Q., Li, R. et al. Constitutive Modeling of the Hot Deformation Behavior in 6082 Aluminum Alloy. J. of Materi Eng and Perform 28, 981–994 (2019). https://doi.org/10.1007/s11665-019-3873-5

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-019-3873-5

Keywords

Navigation