Skip to main content

Advertisement

Log in

Microstructure and Mechanical Properties of Carbon Nanohorns Reinforced Aluminum Composites Prepared by Ball Milling and Spark Plasma Sintering

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

Commercial purity aluminum was reinforced with different percentages of carbon nanohorns (CNH) using ball milling (1 h) followed by spark plasma sintering (SPS) at 550 °C for 5 min under 50 MPa pressure with heating rate 100 °C/min. The microstructure, hardness and compression properties of the spark-plasma-sintered carbon-nanohorns-reinforced aluminum (Al-CNH) composites were evaluated. Transmission electron microscopy revealed a uniform distribution of 0.3% CNH in Al, but above 0.3% CNH, agglomeration occurred. The compression strength of Al-0.3%CNH composites increased by 44% compared to the milled Al sample without CNH.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. S. Iijima, M. Yudasaka, R. Yamada, S. Bandow, K. Suenaga, F. Kokai et al., Nano-Aggregates of Single-Walled Graphitic Carbon Nanohorns, Chem. Phys. Lett., 1999, 309, p 165–170

    Article  CAS  Google Scholar 

  2. T. Yamaguchi, S. Bandow, and S. Iijima, Synthesis of Carbon Nanohorn Particles by Simple Pulsed Arc Discharge Ignited Between Pre-heated Carbon Rods, Chem. Phys. Lett., 2004, 389, p 181–185

    Article  CAS  Google Scholar 

  3. X. Sun, W. Bao, Y. Lv, J. Deng, and X. Wang, Synthesis of High Quality Single-Walled Carbon Nanotubes by Arc Discharge Method in Large Scale, Mater. Lett., 2007, 61, p 3956–3958

    Article  CAS  Google Scholar 

  4. T. Azami, D. Kasuya, R. Yuge, M. Yudasaka, S. Iijima, T. Yoshitake et al., Large-Scale Production of Single-Wall Carbon Nanohorns with High Purity, J. Phys. Chem. C, 2008, 112, p 1330–1334

    Article  CAS  Google Scholar 

  5. T. Isshiki, M. Hashimoto, M. Morii, Y. Ota, K. Kaneda, H. Takahashi, M. Yudasaka, S. Iijima, and F. Okino, Preparation and Mechanical Properties of Rubber Composites Reinforced with Carbon Nanohorns, J. Nanosci. Nanotechnol., 2010, 10, p 3810–3814

    Article  CAS  Google Scholar 

  6. D.B. Miracle, Metal Matrix Composites-From Science to Technological Significance, Compos. Sci. Technol., 2005, 65, p 2526–2540

    Article  CAS  Google Scholar 

  7. Z.Y. Liu, K. Zhao, B.L. Xiao, W.G. Wang, and Z.Y. Ma, Fabrication of CNT/Al Composites with Low Damage to CNTs by a Novel Solution-Assisted Wet Mixing Combined with Powder Metallurgy Processing, Mater. Des., 2016, 97, p 424–430

    Article  CAS  Google Scholar 

  8. B. Chen, J. Shen, X. Ye, L. Jia, S. Li, J. Umeda, M. Takahashi, and K. Kondoh, Length Effect of Carbon Nanotubes on the Strengthening Mechanisms in Metal Matrix Composites, Acta Mater., 2017, 140, p 317–325

    Article  CAS  Google Scholar 

  9. B. Guo, S. Ni, J. Yi, R. Shen, Z. Tang, Y. Du, and M. Song, Microstructures and Mechanical Properties of Carbon Nanotubes Reinforced pure Aluminum Composites Synthesized by Spark Plasma Sintering and Hot Rolling, Mater. Sci. Eng., A, 2017, 698, p 282–288

    Article  CAS  Google Scholar 

  10. N. Saheb, Z. Iqbal, A. Khalil, A.S. Hakeem, N. Al Aqeeli, T. Laoui, A.M. Al-Qutub, and R. Kirchner, Spark Plasma Sintering of Metals and Metal Matrix Nanocomposites: A Review, J. Nanomater., 2012, 983470, p 1–13

    Article  Google Scholar 

  11. C. Masuda, Y.S. Nishimiya, and J. Tang, Fabrication of Carbon Nanotube(MWCNT) Reinforced Aluminum Alloy Matrix Composite, TMS Annual Meeting, 2007, p 115–119

  12. H. Kwon, M. Estili, K. Takagi, T. Miyazaki, and A. Kawasaki, Combination of Hot Extrusion and Spark Plasma Sintering for Producing Carbon Nanotube Reinforced Aluminum Matrix Composites, Carbon, 2009, 47, p 570–577

    Article  CAS  Google Scholar 

  13. H. Kwon, D.H. Park, J.F. Silvain, and A. Kawasaki, Investigation of Carbon Nanotube Reinforced Aluminum Matrix Composite Materials, Compos. Sci. Technol., 2010, 70, p 546–550

    Article  CAS  Google Scholar 

  14. H. Kwon, M. Leparoux, and A. Kawasaki, Functionally Graded Dual-Nanoparticulate-Reinforced Aluminium Matrix Bulk Materials Fabricated by Spark Plasma Sintering, J. Mater. Sci. Technol., 2014, 30, p 736–742

    Article  CAS  Google Scholar 

  15. K. Morsi, A.M.K. Esawi, P. Borah, S. Lanka, and A. Sayed, Characterization and Spark Plasma Sintering of Mechanically Milled Aluminum-Carbon Nanotube (CNT) Composite Powders, J. Compo. Mater., 2010, 44, p 1991–2003

    Article  CAS  Google Scholar 

  16. I.Y. Kim, J.H. Lee, G.S. Lee, S.H. Baik, Y.J. Kim, and Y.Z. Lee, Friction and Wear Characteristics of the Carbon Nanotube-Aluminum Composites with Different Manufacturing Conditions, Wear, 2009, 267, p 593–598

    Article  CAS  Google Scholar 

  17. V. Yadav and S.P. Harimkar, Microstructure and Properties of Spark Plasma Sintered Carbon Nanotube Reinforced Aluminum Matrix Composites, Adv. Eng. Mater., 2011, 13, p 1128–1134

    Article  CAS  Google Scholar 

  18. H. Choi, L. Wang, D. Cheon, and W. Lee, Preparation by Mechanical Alloying of Al Powders with Single-, Double-, and Multi-walled Carbon Nanotubes for Carbon/Metal Nanocomposites, Compos. Sci. Technol., 2013, 74, p 91–98

    Article  CAS  Google Scholar 

  19. H.J. Choi, S.M. Lee, and D.H. Bae, Wear Characteristic of Aluminum-Based Composites Containing Multi-walled Carbon Nanotubes, Wear, 2010, 270, p 12–18

    Article  CAS  Google Scholar 

  20. M. Jagannatham, M.S.S. Saravanan, K. Sivaprasad, and S.P. Kumaresh Babu, Mechanical and Tribological Behavior of Multiwalled Carbon nanotubes Reinforced AA7075 Composites Prepared by Powder Metallurgy and Hot Extrusion, J. Mater. Eng. Perform., 2018, 27(11), p 5675–5688

    Article  CAS  Google Scholar 

  21. Y.F. Wu, G.Y. Kim, and A.M. Russell, Mechanical Alloying of Carbon Nanotube and Al6061 Powder for Metal Matrix Composites, Mater. Sci. Eng., A, 2012, 532, p 558–566

    Article  CAS  Google Scholar 

  22. Y.F. Wu, G.Y. Kim, and A.M. Russell, Effects of Mechanical Alloying on an Al6061-CNT Composite Fabricated by Semi-solid Powder Processing, Mater. Sci. Eng., A, 2012, 538, p 164–172

    Article  CAS  Google Scholar 

  23. R. Pérez-Bustamante, F. Pérez-Bustamante, I. Estrada-Guel, L. Licea-Jiménez, M. Miki-Yoshida, and R. Martínez-Sánchez, Effect of Milling Time and CNT Concentration on Hardness of CNT/Al2024 Composites Produced by Mechanical Alloying, Mater. Charact., 2013, 75, p 13–19

    Article  Google Scholar 

  24. S.W. Lee, H.J. Choi, Y. Kim, and D.H. Bae, Deformation Behaviour of Nanoparticle/Fiber-Reinforced Nanocrystalline Al-Matrix Composites, Mater. Sci. Eng., A, 2007, 449–51, p 782–785

    Article  Google Scholar 

  25. T. Peng and I. Chang, Mechanical Alloying of Multi-walled Carbon Nanotubes Reinforced Aluminum Composite Powder, Powder Technol., 2014, 266, p 7–15

    Article  CAS  Google Scholar 

  26. F.Z. Aneta and B. Stanislaw, Manufacturing and Physico-Mechanical Characterization of Carbon Nanohorns/Polyacrylonitrile Nanocomposites, J. Mater. Sci., 2011, 46, p 5680–5689

    Article  Google Scholar 

  27. P. Jojibabu, M. Jagannatham, P. Haridoss, G.D. Janaki Ram, A.P. Deshpande, and S.R. Bakshi, Effect of Different Carbon Nano-fillers on Rheological Properties and Lap Shear Strength of Epoxy Adhesive Joints, Composites A, 2016, 82, p 53–64

    Article  CAS  Google Scholar 

  28. B. Debalina, N. Vaishakh, M. Jagannatham, K. Vasantha Kumar, N.S. Karthiselva, R. Vinu, P. Haridoss, and S.R. Bakshi, Effect of Different Nano-carbon Reinforcements on Microstructure and Properties of TiO2 Composites Prepared by Spark Plasma Sintering, Ceram. Int., 2016, 42, p 14266–14277

    Article  CAS  Google Scholar 

  29. B. Peng, M. Locascio, P. Zapol, S.Y. Li, S.L. Mielke, G.C. Schatz et al., Measurements of Near-Ultimate Strength for Multiwalled Carbon Nanotubes and Irradiation-Induced Crosslinking Improvements, Nat. Nanotechnol., 2008, 3, p 626–631

    Article  CAS  Google Scholar 

  30. M.F. Yu, O. Lourie, M.J. Dyer, K. Moloni, T.F. Kelly, and R.S. Ruoff, Strength and Breaking Mechanism of Multiwalled Carbon Nanotubes Under Tensile Load, Science, 2000, 287, p 637–640

    Article  CAS  Google Scholar 

  31. B.A. Joseph, M. Jagannatham, D. Rohit Reddy, and P. Haridoss, Synthesis of Thin Bundled Single Walled Carbon Nanotubes and Nanohorn Hybrids by Arc Discharge Technique in Open Air Atmosphere, Diamond Rel. Mater., 2015, 55, p 12–15

    Article  Google Scholar 

  32. H. Kurita, M. Estili, H. Kwon, T. Miyazaki, W. Zhou, J.-F. Silvain et al., Load-Bearing Contribution of Multi-walled Carbon Nanotubes on Tensile Response of Aluminum, Composites A, 2015, 68, p 133–139

    Article  CAS  Google Scholar 

  33. M. Jagannatham, S. Sankaran, and P. Haridoss, Microstructure and Mechanical Behavior of Copper Coated Multiwall Carbon Nanotubes Reinforced Aluminum Composites, Mater. Sci. Eng., A, 2015, 638, p 197–207

    Article  CAS  Google Scholar 

  34. F.A. Khalid, O. Beffort, U.E. Klotz, B.A. Keller, P. Gasser, and S. Vaucher, Study of Microstructure and Interfaces in an Aluminum-C60 Composite Material, Acta Mater., 2003, 51, p 4575–4582

    Article  CAS  Google Scholar 

  35. H.J. Choi, J.H. Shin, and D.H. Bae, Self-assembled Network Structures in Al/C60 Composites, Carbon, 2010, 48, p 3700–3707

    Article  CAS  Google Scholar 

  36. K. Choi, J. Seo, D.H. Bae, and H.J. Choi, Mechanical Properties of Aluminum-Based Nanocomposite Reinforced with Fullerenes, Trans. Nonferrous Met. Soc. China, 2014, 24, p s47–s52

    Article  CAS  Google Scholar 

  37. J.H. Shin, K. Choi, S. Shiko, H.J. Choi, and D.H. Bae, Mechanical Damping Behavior of Al/C60-Fullerene Composites with Supersaturated Al-C Phases, Composites B, 2015, 77, p 194–198

    Article  CAS  Google Scholar 

  38. H.F.C. Robles and H.A. Calderon, Nanostructured Al/Al4C3 Composites Reinforced with Graphite or Fullerene and Manufactured by Mechanical Milling and Spark Plasma Sintering, Mater. Chem. Phys., 2012, 132, p 815–822

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Prathap Haridoss.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jagannatham, M., Sankaran, S. & Haridoss, P. Microstructure and Mechanical Properties of Carbon Nanohorns Reinforced Aluminum Composites Prepared by Ball Milling and Spark Plasma Sintering. J. of Materi Eng and Perform 29, 582–592 (2020). https://doi.org/10.1007/s11665-019-04534-w

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-019-04534-w

Keywords

Navigation