Skip to main content
Log in

Cracking in Calcium Aluminate Cement Pastes Induced at Different Exposure Temperatures

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

Different formulations of calcium aluminate cement (CAC) pastes containing 51 and 71 wt.% Al2O3 were exposed to high-temperature environments so that the damage suffered under different thermal conditions could be studied. Samples had water-to-cement (W/C) ratios of 0.25, 0.30 and 0.40. Both the raw cement powders and their corresponding hydrated samples were characterized using scanning electron microscopy, x-ray diffraction (with Rietveld refinement), Fourier-transform infrared spectroscopy and x-ray fluorescence. All samples were exposed to oxidative environments for 1 h at 500, 800 and 1000 °C in a furnace with an air atmosphere. Hot samples were slowly cooled down in order to avoid the damage induced by thermal contraction. The damage that occurred while the samples were in the furnace and exposed to high temperatures could then be analyzed. The damage was examined by digital image analysis and the length of the cracks was fitted to Weibull distributions using Monte Carlo simulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. K.L. Scrivener, J.-L. Cabiron, and R. Letourneux, High-Performance Concretes from Calcium Aluminate Cements, Cem. Concr. Res., 1999, 29(8), p 1215–1223

    Article  CAS  Google Scholar 

  2. W. Khaliq and H.A. Khan, High Temperature Material Properties of Calcium Aluminate Cement Concrete, Constr. Build. Mater., 2015, 94, p 475–487

    Article  Google Scholar 

  3. F.A. Cardoso, M.D.M. Innocentini, M.M. Akiyoshi, and V.C. Pandolfelli, Effect of Curing Time on the Properties of CAC Bonded Refractory Castables, J. Eur. Ceram. Soc., 2004, 24(7), p 2073–2078

    Article  CAS  Google Scholar 

  4. V. Antonovič, J. Kerienė, R. Boris, and M. Aleknevičius, The Effect of Temperature on the Formation of the Hydrated Calcium Aluminate Cement Structure, Procedia Eng., 2013, 57, p 99–106

    Article  Google Scholar 

  5. N. Ukrainczyk, T. Matusinovic, S. Kurajica, B. Zimmermann, and J. Sipusic, Dehydration of a Layered Double Hydroxide—C2AH8, Thermochim. Acta, 2007, 464(1–2), p 7–15

    Article  CAS  Google Scholar 

  6. N.P. Padture, M. Gell, and E.H. Jordan, Thermal Barrier Coatings for Gas-Turbine Engine Applications, Science (80), 2002, 296(5566), p 280–284

    Article  CAS  Google Scholar 

  7. W.D. Kingery, Factors Affecting Thermal Stress Resistance of Ceramic Materials, J. Am. Ceram. Soc., 1955, 38(1), p 3–15

    Article  Google Scholar 

  8. D.P.H. Hasselman, Elastic Energy at Fracture and Surface Energy as Design Criteria for Thermal Shock, J. Am. Ceram. Soc., 1963, 46(11), p 535–540

    Article  CAS  Google Scholar 

  9. D.P.H. Hasselman, Unified Theory of Thermal Shock Fracture Initiation and Crack Propagation in Brittle Ceramics, J. Am. Ceram. Soc., 1969, 52(11), p 600–604

    Article  CAS  Google Scholar 

  10. J. Nakayama and M. Ishizuka, Experimental Evidence for Thermal Shock Damage Resistance, Am. Ceram. Soc. Bull., 1966, 45(7), p 666

    Google Scholar 

  11. T.J. Lu and N.A. Fleck, The Thermal Shock Resistance of Solids, Acta Mater., 1998, 46(13), p 4755–4768

    Article  CAS  Google Scholar 

  12. M.I.K. Collin and D.J. Rowcliffe, Influence of Thermal Conductivity and Fracture Toughness on the Thermal Shock Resistance of Alumina—Silicon–Carbide–Whisker Composites, J. Am. Ceram. Soc., 2001, 84(6), p 1334–1340

    Article  CAS  Google Scholar 

  13. H.-A. Bahr, G. Fischer, and H.-J. Weiss, Thermal-Shock Crack Patterns Explained by Single and Multiple Crack Propagation, J. Mater. Sci., 1986, 21(8), p 2716–2720

    Article  CAS  Google Scholar 

  14. H.-A. Bahr, H. Balke, M. Kuna, and H. Liesk, Fracture Analysis of a Single Edge Cracked Strip Under Thermal Shock, Theor. Appl. Fract. Mech., 1987, 8(1), p 33–39

    Article  Google Scholar 

  15. D.R. Jenkins, Optimal Spacing and Penetration of Cracks in a Shrinking Slab, Phys. Rev. E, 2005, 71(5), p 56117

    Article  CAS  Google Scholar 

  16. B. Bourdin, G.A. Francfort, and J.-J. Marigo, The Variational Approach to Fracture, J. Elast., 2008, 91(1–3), p 5–148

    Article  Google Scholar 

  17. A. Combescure, R. de Borst, and T. Belytschko, Symposium on Discretization Methods for Evolving Discontinuities.

  18. H. Le Doussal et al., Comportement des produits refractaires soumis a des solicitations thermomechanique severes, Bull. Soc. Fr. Ceram, 1979, 124, p 29–55

    Google Scholar 

  19. M.J. Heap et al., The influence of Thermal-Stressing (up to 1000 °C) on the Physical, Mechanical, Chemical Properties of Siliceous-Aggregate, High-Strength Concrete, Constr. Build. Mater., 2013, 42, p 248–265

    Article  Google Scholar 

  20. K. Sakr and E. El-Hakim, Effect of High Temperature or Fire on Heavy Weight Concrete Properties, Cem. Concr. Res., 2005, 35(3), p 590–596

    Article  CAS  Google Scholar 

  21. M.H.B. Nasseri, A. Schubnel, and R.P. Young, Coupled Evolutions of Fracture Toughness and Elastic Wave Velocities at High Crack Density in Thermally Treated Westerly Granite, Int. J. Rock Mech. Min. Sci., 2007, 44(4), p 601–616

    Article  Google Scholar 

  22. C. Parr, L. Bin, B. Valdelièvre, C. Wöhrmeyer, and B. Touzo, The Advantages of Calcium Aluminate Cement Containing Castables for Steel Ladle Applications, Proc. ALAFAR, 2004, 2004, p 10–15

    Google Scholar 

  23. X.-T. Feng, S. Chen, and H. Zhou, Real-Time Computerized Tomography (CT) Experiments on Sandstone Damage Evolution During Triaxial Compression with Chemical Corrosion, Int. J. Rock Mech. Min. Sci., 2004, 41(2), p 181–192

    Article  Google Scholar 

  24. S. Huang and K. Xia, Effect of Heat-Treatment on the Dynamic Compressive Strength of Longyou Sandstone, Eng. Geol., 2015, 191, p 1–7

    Article  Google Scholar 

  25. J. Otani, T. Mukunoki, and Y. Obara, Application of x-ray CT Method for Characterization of Failure in Soils, Soils Found., 2000, 40(2), p 111–118

    Article  Google Scholar 

  26. S. Huang, K. Xia, and H. Zheng, Observation of Microscopic Damage Accumulation in Brittle Solids Subjected to Dynamic Compressive Loading, Rev. Sci. Instrum., 2013, 84(9), p 93903

    Article  CAS  Google Scholar 

  27. S. Huang, K. Xia, F. Yan, and X. Feng, An Experimental Study of the Rate Dependence of Tensile Strength Softening of Longyou Sandstone, Rock Mech. Rock Eng., 2010, 43(6), p 677–683

    Article  Google Scholar 

  28. Y. Xu, Y.L. Wong, C.S. Poon, and M. Anson, Influence of PFA on Cracking of Concrete and Cement Paste After Exposure to High Temperatures, Cem. Concr. Res., 2003, 33(12), p 2009–2016

    Article  CAS  Google Scholar 

  29. M.S. Morsy, Y.A. Al-Salloum, H. Abbas, and S.H. Alsayed, Behavior of Blended Cement Mortars Containing Nano-metakaolin at Elevated Temperatures, Constr. Build. Mater., 2012, 35, p 900–905

    Article  Google Scholar 

  30. C. F. Revelo and H. A. Colorado, 3D Printing of Kaolinite Clay Ceramics Using the Direct Ink Writing (DIW) Technique, Ceram. Int., 2017.

  31. M.C.A. Teles, G.R. Altoé, P. Amoy Netto, H. Colorado, F.M. Margem, and S.N. Monteiro, Fique Fiber Tensile Elastic Modulus Dependence with Diameter Using the Weibull Statistical Analysis, Mater. Res., 2015, 18, p 193–199

    Article  CAS  Google Scholar 

  32. J.F. Zapata, M. Gomez, and H.A. Colorado, Structure-Property Relation and Weibull Analysis of Calcium Aluminate Cement Pastes, Mater. Charact., 2017, 134, p 9–17

    Article  CAS  Google Scholar 

  33. H.G. Midgley, Quantitative Determination of Phases in High Alumina Cement Clinkers by x-Ray Diffraction, Cem. Concr. Res., 1976, 6(2), p 217–223

    Article  CAS  Google Scholar 

  34. M.F. Gazulla, M.P. Gomez, M. Orduna, and A. Barba, Physico-Chemical Characterisation of Silicon Carbide Refractories, J. Eur. Ceram. Soc., 2006, 26(15), p 3451–3458

    Article  CAS  Google Scholar 

  35. H.A. Colorado, H.T. Hahn, and C. Hiel, Pultruded Glass Fiber-and Pultruded Carbon Fiber-Reinforced Chemically Bonded Phosphate Ceramics, J. Compos. Mater., 2011, 45(23), p 2391–2399

    Article  CAS  Google Scholar 

  36. H.A. Colorado, C. Hiel, and J. Yang, Different Fibers Exposed to Temperatures Up to 1000 & #xB0;C, Mech. Prop. Perform. Eng. Ceram. Compos., 2014, VIII, p 123–135

    Google Scholar 

  37. S. Akpinar, I.A. Altun, and K. Onel, Effects of SiC Addition on the Structure and Properties of Reticulated Porous Mullite Ceramics, J. Eur. Ceram. Soc., 2010, 30(13), p 2727–2734

    Article  CAS  Google Scholar 

  38. L. Fernández-Carrasco and T. Vázquez, Aplicación de la espectroscopia infrarroja al estudio de cemento aluminoso, Mater. construcción, 1996, 46(241), p 39–51

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Henry A. Colorado.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zapata, J.F., Gomez, M. & Colorado, H.A. Cracking in Calcium Aluminate Cement Pastes Induced at Different Exposure Temperatures. J. of Materi Eng and Perform 28, 7502–7513 (2019). https://doi.org/10.1007/s11665-019-04466-5

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-019-04466-5

Keywords

Navigation