Skip to main content
Log in

Effects of Ta Addition on the Microstructure and Mechanical Properties of CoCu0.5FeNi High-Entropy Alloy

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

In this work, the alloying effects of Ta element on the microstructure evolution and mechanical properties of CoCu0.5FeNiTax (x = 0-0.6 at.%) high-entropy alloys were studied. The microstructure changed from single solid solution to hypoeutectic, then to eutectic, and finally to hypereutectic with the increase in Ta content, which is because Ta element facilitates the Laves phase to form. The volume fraction of hard and brittle Laves phase increases with the Ta content, which increases the yield strength, Vickers hardness and theoretical density but decreases the plastic strain. The CoCu0.5FeNiTa0.1 alloy with a single FCC solid solution structure shows the optimal balance between density and ductility. The theoretical density and tensile fracture strain can reach 8.94 g/cm3 and 36.3%, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. G. Birkhoff, D.P. MacDougall, E.M. Pugh, and S.G. Taylor, Explosives with Lined Cavities, J. Appl. Phys., 1948, 19(6), p 563–582

    Article  CAS  Google Scholar 

  2. S. Lee, J. Kim, S. Kim, S. Lee, J. Jeong, and C. Lee, Performance Comparison of Double-Layer Liner for Shaped Charge Fabricated Using Kinetic Spray, J. Therm. Spray. Tech., 2018, 28(3), p 484–494

    Article  Google Scholar 

  3. H.W. He and S.Y. Jia, Direct Electrodeposition of Cu-Ni-W Alloys for the Liners for Shaped Charges, J. Mater. Sci. Technol., 2010, 26(5), p 429–432

    Article  CAS  Google Scholar 

  4. F. Yang, W.H. Tian, C.C. Feng, and B.S. Wang, Crystal Defects Formed in Electroformed Nickel Liners of Shaped Charges, Acta Metall. Sin., 2009, 22(5), p 383–391

    Article  CAS  Google Scholar 

  5. F. Yang, C.H. Li, S.W. Cheng, L. Wang, and W.H. Tian, Deformation Behavior of Explosive Detonation in Electroformed Nickel Liner of Shaped Charge with Nano-Sized Grains, Trans. Nonferrous Met. Soc. China, 2010, 20, p 1397–1402

    Article  CAS  Google Scholar 

  6. B. Xi, J.X. Liu, S.K. Li, C.C. Cui, W.Q. Guo, and T.T. Wu, Effect of Interaction Mechanism Between Jet and Target on Penetration Performance of Shaped Charge Liner, Mater. Sci. Eng. A, 2012, 553(36), p 142–148

    Article  CAS  Google Scholar 

  7. Q. Wei, T. Jiao, K.T. Ramesh, E. Ma, L.J. Kecskes, L. Magness, R. Dowding, V.U. Kazykhanov, and R.Z. Valiev, Mechanical Behavior and Dynamic Failure of High-Strength Ultrafine Grained Tungsten Under Uniaxial Compression, Acta Mater., 2006, 54(1), p 77–87

    CAS  Google Scholar 

  8. Q. Wei, H.T. Zhang, B.E. Schuster, K.T. Ramesh, R.Z. Valiev, L.J. Kecskes, R.J. Dowding, L. Magness, and K. Cho, Microstructure and Mechanical Properties of Super-Strong Nanocrystalline Tungsten Processed by High-Pressure Torsion, Acta Mater., 2006, 54(15), p 4079–4089

    Article  CAS  Google Scholar 

  9. W. Guo, S.K. Li, F.C. Wang, and M. Wang, Dynamic Recrystallization of Tungsten in a Shaped Charge Liner, Scr. Mater., 2009, 60, p 329–332

    Article  CAS  Google Scholar 

  10. H.M. He, L.X. Wang, J. Sun, H.P. Gu, and F.W. Liu, Experiment and Numerical Simulation on Rod-Like Jet Formation by Molybdenum Liner, Explos. Shock Waves, 2013, 33, p 28–33

    Google Scholar 

  11. W. Walters, W. Gooch, and M. Burkins, The Penetration Resistance of a Titanium Alloy against Jets From Tantalum Shaped Charge Liners, Int. J. Impact Eng, 2001, 26(1), p 823–830

    Article  Google Scholar 

  12. T.F. Guo, W.B. Li, W.B. Li, and X.W. Hong, Controlling Effect of Tantalum Liner’s Structural Parameters on EFP Formation and Penetration Performance, Chin. J. High Pressure Phys., 2018, 32(3), p 1–6

    Google Scholar 

  13. W.Q. Guo, J.X. Liu, Y. Xiao, S.K. Li, Z.Y. Zhao, and J. Cao, Comparison of Penetration Performance and Penetration Mechanism of W-Cu Shaped Charge Liner Against Three Kinds of Target: Pure Copper, Carbon Steel and Ti-6Al-4 V Alloy, Int. J. Refract. Met. Hard Mater., 2016, 60, p 147–153

    Article  CAS  Google Scholar 

  14. B. Cantor, I.T.H. Chang, P. Knight, and A.J.B. Vincent, Microstructural Development in Equiatomic Multicomponent Alloys, Mater. Sci. Eng. A, 2004, 375–377(1), p 213–218

    Article  Google Scholar 

  15. J.W. Yeh, S.K. Chen, S.J. Lin, J.Y. Gan, T.S. Chin, T.T. Shun, C.H. Tsau, and S.Y. Chang, Nanostructured High-Entropy Alloys with Multiple Principal Elements: Novel Alloy Design Concepts and Outcomes, Adv. Eng. Mater., 2004, 6(5), p 299–303

    Article  CAS  Google Scholar 

  16. Z.M. Li, K.G. Pradeep, Y. Deng, D. Raabe, and C.C. Tasan, Metastable High-Entropy Dual-Phase Alloys Overcome the Strength–Ductility Trade-Off, Nature, 2016, 534, p 227–230

    Article  CAS  Google Scholar 

  17. F. Zhang, Y. Wu, H.B. Lou, Z.D. Zeng, V.B. Prakapenka, E. Greeberg, Y. Ren, J.Y. Yan, J.S. Okasinski, X.J. Liu, Y. Liu, Q.S. Zeng, and Z.P. Lu, Polymorphism in a High-Entropy Alloy, Nat. Commun., 2017, 8, p 15687

    Article  CAS  Google Scholar 

  18. H.W. Yao, J.W. Qiao, J.A. Hawk, H.F. Zhou, M.W. Chen, and M.C. Gao, Mechanical Properties of Refractory High-Entropy Alloys: Experiments and Modeling, J. Alloys Compd., 2017, 696, p 1139–1150

    Article  CAS  Google Scholar 

  19. J.W. Qiao, M.L. Bao, Y.J. Zhao, H.J. Yang, Y.C. Wu, Y. Zhang, J.A. Hawk, and M.C. Gao, Rare-Earth High Entropy Alloys with Hexagonal Close-Packed Structure, J. Appl. Phys., 2018, 124, p 195101

    Article  Google Scholar 

  20. Y. Zhang, T.T. Zuo, Z. Tang, M.C. Gao, K.A. Dahmen, P.K. Liaw, and Z.P. Lu, Microstructures and Properties of High-Entropy Alloys, Prog. Mater Sci., 2014, 61, p 1–93

    Article  Google Scholar 

  21. Y. Zhang, Y.J. Zhou, J.P. Lin, G.L. Chen, and P.K. Liaw, Solid-Solution Phase Formation Rules for Multi-Component Alloys, Adv. Eng. Mater., 2008, 10(6), p 534–538

    Article  CAS  Google Scholar 

  22. B. Gludovatz, A. Hohenwarter, D. Catoor, E.H. Chang, E.P. George, and R.O. Ritchie, A Fracture-Resistant High-Entropy Alloy for Cryogenic Applications, Science, 2014, 345(6201), p 1153–1158

    Article  CAS  Google Scholar 

  23. S.M. Oh and S.I. Hong, Microstructural Stability and Mechanical Properties of Equiatomic CoCrCuFeNi, CrCuFeMnNi, CoCrCuFeMn Alloys, Mater. Chem. Phys., 2018, 210, p 120–125

    Article  CAS  Google Scholar 

  24. T.T. Shun and Y.C. Du, Microstructure and Tensile Behaviors of FCC Al03CoCrFeNi High Entropy Alloy, J. Alloy. Compd., 2009, 479(1), p 157–160

    Article  CAS  Google Scholar 

  25. M.C. Gao, J.W. Yeh, P.K. Liaw, and Y. Zhang, High-Entropy Alloys: Fundamentals and Applications, 1st ed., Springer, Cham, 2016

    Book  Google Scholar 

  26. H. Jiang, K.M. Han, D.X. Qiao, Y.P. Lu, Z.Q. Cao, and T.J. Li, Effects of Ta Addition on the Microstructures and Mechanical Properties of CoCrFeNi High Entropy Alloy, Mater. Chem. Phys., 2018, 210, p 43–48

    Article  CAS  Google Scholar 

  27. L. Jiang, Y.P. Lu, Y. Dong, T.M. Wang, Z.Q. Cao, and T.J. Li, Effects of Nb Addition on Structural Evolution and Properties of the CoFeNi2V0.5 High-Entropy Alloy, Appl. Phys. A, 2015, 119(1), p 291–297

    Article  CAS  Google Scholar 

  28. P. Cui, Y.M. Ma, L.J. Zhang, M.D. Zhang, J.T. Fan, W.Q. Dong, P.F. Yu, and G. Li, Microstructure and Mechanical Behaviors of CoFeNiMnTixAl1-x High Entropy Alloys, Mater. Sci. Eng. A, 2018, 731, p 124–130

    Article  CAS  Google Scholar 

  29. D.B. Miracle and O.N. Senkov, A Critical Review of High Entropy Alloys and Related Concepts, Acta Mater., 2017, 122, p 448–511

    Article  CAS  Google Scholar 

  30. D. Yong, Y.P. Lu, J.R. Kong, J.J. Zhang, and T.J. Li, Microstructure and Mechanical Properties of Multi-Component AlCrFeNiMox High-Entropy Alloys, J. Alloy. Compd., 2013, 573(10), p 96–101

    Google Scholar 

  31. S. Guo, C. Ng, and C.T. Liu, Anomalous Solidification Microstructures in Co-Free AlxCrCuFeNi2 High-Entropy Alloys, J. Alloy. Compd., 2013, 557(10), p 77–81

    Article  CAS  Google Scholar 

  32. W.Y. Huo, H. Zhou, F. Fang, X.F. Zhou, Z.H. Xie, and J.Q. Jiang, Microstructure and Properties of Novel CoCrFeNiTax Eutectic High-Entropy Alloys, J. Alloys Compd., 2018, 735, p 897–904

    Article  CAS  Google Scholar 

  33. N. Yurchenko, N. Stepanov, and G. Salishchev, Laves-Phase Formation Criterion for High-Entropy Alloys, Mater. Sci. Technol., 2017, 33(1), p 17–22

    Article  CAS  Google Scholar 

  34. S. Guo and C.T. Liu, Phase Stability in High Entropy Alloys: Formation of Solid-Solution Phase or Amorphous Phase, Prog. Nat. Sci. Mater. Int., 2011, 21, p 433–446

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Nos. 51671044, 51822402 and 51574058), Dalian Support Plan for Innovation of High-level Talents (Top and Leading Talents, 2015R013), the Fundamental Research Funds for the Central Universities, Dalian Support Plan for Innovation of High-level Talents (Youth Technology Stars, 2016RQ005).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yiping Lu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, T., Lu, Y., Cao, Z. et al. Effects of Ta Addition on the Microstructure and Mechanical Properties of CoCu0.5FeNi High-Entropy Alloy. J. of Materi Eng and Perform 28, 7642–7648 (2019). https://doi.org/10.1007/s11665-019-04463-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-019-04463-8

Keywords

Navigation