Skip to main content
Log in

Tensile Properties of a Cast Al-Si-Mg Alloy with Reduced Si Content and Cr Addition at High Temperature

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

Tensile properties of an Al-Si-Mg casting alloy with reduced Si content and Cr addition were investigated at room and high temperatures. It was found that the studied alloy exhibits a remarkable performance up to 200 °C, with comparable or slightly higher strength than typical values for Al-Si-Mg-Cu alloys, commonly used for high-temperature applications, and good elongation. This is due to the choice of proper heat treatment and to the formation of dispersoids containing Cr during heat treatment, which are stable at the considered temperatures, as demonstrated by scanning and transmission electron microscopy (STEM) analysis. Interestingly, exposure to 300 °C during tensile tests enhanced an additional formation of dispersoids. It is believed that heating the material in T6 condition led to such observed dispersoids formation since precursors were already present in the Al matrix. This is not sufficient to avoid material softening at 300 °C, but it represents an interesting point in order to develop alternative heat treatment routes for dispersion-strengthened Al alloys.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Mahle GmbH, Ed., Pistons and Engine Testing, Springer Science & Business Media, Stuttgart, 2012, p 59–76

    Google Scholar 

  2. J. Man, L. Jing, and S. Jie, The Effects of Cu Addition on the Microstructure and Thermal Stability of an Al-Mg-Si Alloy, J. Alloys Compd., 2007, 437, p 146–150

    CAS  Google Scholar 

  3. M. Zamani, S. Seifeddine, and A. Jarfors, High Temperature Tensile Deformation Behavior and Failure Mechanisms of an Al-Si-Cu-Mg Cast Alloy—The Microstructural Scale Effect, Mater. Des., 2015, 86, p 361–370

    CAS  Google Scholar 

  4. Y. Li, S. Brusethaug, and A. Olsen, Influence of Cu on the Mechanical Properties and Precipitation Behavior of AlSi7Mg0.5 Alloy During Aging Treatment, Scr. Mater., 2006, 54, p 99–103

    CAS  Google Scholar 

  5. M. Javidani and D. Larouche, Application of Cast Al-Si Alloys in Internal Combustion Engine Components, Int. Mater. Rev., 2014, 59(3), p 132–158

    CAS  Google Scholar 

  6. L. Ceschini, A. Morri, A. Morri, S. Toschi, S. Johansson, and S. Seifeddine, Effect of Microstructure and Overaging on the Tensile Behavior at Room and Elevated Temperature of C355-T6 Cast Aluminum Alloy, Mater. Des., 2015, 83, p 626–634

    CAS  Google Scholar 

  7. E. Kilinc and Y. Birol, Optimising the T6 Heat Treatment for Gravity Cast AlSi7MgCu0.5 Alloy V8 Cylinder Heads, Int. J. Cast Met. Res., 2017, 30(4), p 244–250

    CAS  Google Scholar 

  8. S. Roy, L. Allard, A. Rodriguez, T. Watkins, and A. Shyam, Comparative Evaluation of Cast Aluminum Alloys for Automotive Cylinder Heads: Part I—Microstructure Evolution, Metall. Mater. Trans. A, 2017, 48(5), p 2529–2542

    CAS  Google Scholar 

  9. J.R. Davis, Ed., ASM Speciality Handbook, Aluminum and Aluminum Alloys, ASM International, Davis & Associates, Materials Park, 1993

    Google Scholar 

  10. W. Kasprzak, B. Amirkhiz, and M. Niewczas, Structure and Properties of Cast Al-Si Based Alloy with Zr-V-Ti Additions and Its Evaluation of High Temperature Performance, J. Alloys Compd., 2014, 595, p 67–79

    CAS  Google Scholar 

  11. S. Shaha, F. Czerwinski, W. Kasprzak, J. Friedman, and D. Chen, Improving High-Temperature Tensile and Low-Cycle Fatigue Behavior of Al-Si-Cu-Mg Alloys Through Micro-additions of Ti, V, and Zr, Metall. Mater. Trans. A, 2015, 46A, p 3063–3078

    Google Scholar 

  12. S. Shaha, F. Czerwinski, W. Kasprzak, J. Friedman, and D. Chen, Ageing Characteristics and High-Temperature Tensile Properties of Al-Si-Cu-Mg Alloys with Micro-Additions of Cr, Ti, V and Zr, Mater. Sci. Eng. A, 2016, 652, p 353–364

    CAS  Google Scholar 

  13. M. Zamani, L. Morini, L. Ceschini, and S. Seifeddine, The Role of Transition Metal Additions on the Ambient and Elevated Temperature Properties of Al-Si Alloys, Mater. Sci. Eng. A, 2017, 693, p 42–50

    CAS  Google Scholar 

  14. M. Di Giovanni, E. Cerri, D. Casari, M. Merlin, L. Arnberg, and G. Garagnani, The Influence of Ni and V Trace Elements on High-Temperature Tensile Properties and Aging of A356 Aluminum Foundry Alloy, Metall. Mater. Trans. A, 2016, 47(5), p 2049–2057

    Google Scholar 

  15. L. Lattanzi, M. Di Giovanni, M. Giovagnoli, A. Fortini, M. Merlin, D. Casari, M. Di Sabatino, E. Cerri, and G. Garagnani, Room Temperature Mechanical Properties of A356 Alloy with Ni Additions from 0.5 to 2 wt.%, Metals, 2018, 8, p 224

    Google Scholar 

  16. S. Pramod, A.K.P. Rao, B. Murty, and S. Bakshi, Effect of Sc Addition and T6 Aging Treatment on the Microstructure Modification and Mechanical Properties of A356 Alloy, Mater. Sci. Eng. A, 2016, 674, p 438–450

    CAS  Google Scholar 

  17. S. Mondol, T. Alam, R. Banerjee, S. Kumar, and K. Chattopadhyay, Development of a High Temperature High Strength Al Alloy by Addition of Small Amounts of Sc and Mg to 2219 Alloy, Mater. Sci. Eng. A, 2017, 687, p 221–231

    CAS  Google Scholar 

  18. A. Farkoosh, X. Grant Chen, and M. Pekguleryuz, Dispersoid Strengthening of a High Temperature Al-Si-Cu-Mg Alloy via Mo Addition, Mater. Sci. Eng. A, 2015, 620, p 181–189

    Google Scholar 

  19. M. Colombo, E. Gariboldi, and A. Morri, Influences of Different Zr Additions on the Microstructure, Room and High Temperature Mechanical Properties of an Al-7Si-0.4 Mg Alloy Modified with 0.25%Er, Mater. Sci. Eng. A, 2018, 713, p 151–160

    CAS  Google Scholar 

  20. M. Colombo, E. Gariboldi, and A. Morri, Er Addition to Al-Si-Mg-Based Casting Alloy: Effects on Microstructure, Room and High Temperature Mechanical Properties, J. Alloys Compd., 2017, 708, p 1234–1244

    CAS  Google Scholar 

  21. Z. Gao, H. Li, Y. Lai, Y. Ou, and D. Li, Effects of Minor Zr and Er on Microstructure and Mechanical Properties of Pure Aluminum, Mater. Sci. Eng. A, 2013, 580, p 92–98

    CAS  Google Scholar 

  22. M. Tocci, R. Donnini, G. Angella, and A. Pola, Effect of Cr and Mn Addition and Heat Treatment on AlSi3Mg Casting Alloy, Mater. Charact., 2017, 123, p 75–82

    CAS  Google Scholar 

  23. M. Tocci, M. Losio, P. Suwanpinji, and A. Pola, Experimental Investigation on the Formation of Cr-Containing Dispersoids in an AlSi3 Alloy by X-Ray Synchrotron Radiation, J. Alloys Compd., 2018, 742, p 555–562

    CAS  Google Scholar 

  24. M. Tocci, A. Pola, L. Montesano, G. La Vecchia, M. Merlin, and G. Garagnani, Investigation of Mechanical Properties of AlSi3Cr Alloy, Frattura Integr. Strutt., 2017, 42, p 337–351

    Google Scholar 

  25. G. Gottardi, M. Tocci, M. Montesano, and A. Pola, Cavitation Erosion Behaviour of an Innovative Aluminium Alloy for Hybrid Aluminium Forging, Wear, 2018, 394–395, p 1–10

    Google Scholar 

  26. Y. Wang, H. Liao, Y. Wu, and J. Yang, Effect of Si Content on Microstructure and Mechanical Properties of Al-Si-Mg Alloys, Mater. Des., 2014, 53, p 634–638

    CAS  Google Scholar 

  27. B. Zhu, P. Leisner, S. Seifeddine, and E. Jarfors, Influence of Si and Cooling Rate on Microstructure and Mechanical Properties of Al-Si-Mg Cast Alloys, Surf. Interface Anal., 2016, 48, p 861–869

    CAS  Google Scholar 

  28. D. Dwivedi, R. Sharma, and A. Kumar, Influence of Silicon Content and Heat Treatment Parameters on Mechanical Properties of Cast Al-Si-Mg Alloys, Int. J. Cast Met. Res., 2006, 19(5), p 275–282

    CAS  Google Scholar 

  29. S. Joseph and S. Kumar, A Systematic Investigation of Fracture Mechanisms in Al-Si Based Eutectic Alloy-Effect of Si Modification, Mater. Sci. Eng. A, 2013, 588, p 111–124

    CAS  Google Scholar 

  30. M. Dighe and A. Gokhale, Relationship Between Microstructural Extremum and Fracture Path in a Cast Al-Si-Mg Alloy, Scr. Mater., 1997, 9(1), p 1435–1440

    Google Scholar 

  31. C. Caceres, C. Davidson, and J. Griffiths, The Deformation and Fracture Behaviour of an AlSiMg Casting Alloy, Mater. Sci. Eng. A, 1995, 197(2), p 171–179

    Google Scholar 

  32. T. Hosch and R. Napolitano, The Effect of the Flake to Fiber Transition in Silicon Morphology on the Tensile Properties of Al-Si Eutectic Alloys, Mater. Sci. Eng. A, 2010, 582(1), p 226–232

    Google Scholar 

  33. A. Fortini, L. Lattanzi, M. Merlin, and G. Garagnani, Comprehensive Evaluation of Modification Level Assessment in Sr-Modified Aluminium Alloys, Int. J. Metalcast., 2018, 12(4), p 697–711

    CAS  Google Scholar 

  34. M. Tocci, A. Pola, L. Raza, L. Armellin, and U. Afeltra, Optimization of Heat Treatment Parameters for a Non-conventional Al-Si-Mg Alloy with Cr Addition by DoE Method, Metall. Ital., 2016, 6, p 141–144

    Google Scholar 

  35. S. Shabestari, The Effect of Iron and Manganese on the Formation of Intermetallic Compounds in Aluminum-Silicon Alloys, Mater. Sci. Eng. A, 2004, 383, p 289–298

    Google Scholar 

  36. J. Taylor, Iron-Containing Intermetallic Phases in Al-Si Based Casting Alloys, Procedia Mater. Sci., 2012, 1, p 19–33

    CAS  Google Scholar 

  37. M. Drouzy, S. Jacob, and M. Richard, Interpretation of Tensile Results by Means of Quality Index and Probable Yield Strength, AFS Int. Cast Met. J., 1980, 5(2), p 43–50

    CAS  Google Scholar 

  38. M. Tiryakioğlu, J. Campbell, and N. Alexopoulos, Quality Indices for Aluminum Alloy Castings: A Critical Review, Metall. Mater. Trans. B, 2009, 40B, p 802–811

    Google Scholar 

  39. C. Càceres, Microstructure Design and Heat Treatment Selection for Casting Alloys Using the Quality Index, J. Mater. Eng. Perform., 2000, 9(2), p 215–221

    Google Scholar 

  40. C. Càceres, I. Svensson, and J. Taylor, Strength-Ductility Behaviour of Al-Si-Cu-Mg Casting Alloys in T6 Temper, Int. J. Cast Met. Res., 2003, 15(5), p 531–543

    Google Scholar 

  41. N. Alexopoulos and M. Tiryakioǧlu, On the Uniform Elongation of Cast Al-7%Si-0.6%Mg (A357) Alloys, Mater. Sci. Eng. A, 2009, 507, p 236–240

    Google Scholar 

  42. E. Sjolander, Heat Treatment of Al-Si-Cu-Mg Casting Alloys, Ph.D. Dissertation, Department of Mechanical Engineering School of Engineering, Jönköping University, 2011.

  43. H. Elhadari, H. Patel, D. Chen, and W. Kasprzak, Tensile and Fatigue Properties of Cast Aluminium Alloy with Ti, Zr and V Additions, Mater. Sci. Eng. A, 2011, 528, p 8128–8138

    CAS  Google Scholar 

  44. E. Gariboldi, J. Lemke, L. Rovatti, O. Baer, G. Timelli, and F. Bonollo, High Temperature Behavior of High Pressure Die Cast Alloys Based on the Al-Si-Cu System: The Role Played by Chemical Composition, Metals, 2018, 8(5), p 348

    Google Scholar 

  45. J. Ferguson, H. Lopez, K. Cho, and C. Kim, Temperature Effects on the Tensile Properties of Precipitation-Hardened Al-Mg-Cu-Si Alloys, Metals, 2016, 6, p 43

    Google Scholar 

  46. L. Lodgaard and N. Ryum, Precipitation of Dispersoids Containing Mn and/or Cr in Al-Mg-Si Alloys, Mater. Sci. Eng. A, 2000, 283, p 144–152

    Google Scholar 

  47. R. Hu, T. Ogura, H. Tezuka, T. Sato, and Q. Liu, Dispersoid Formation and Recrystallization Behavior in an Al-Mg-Si-Mn Alloy, J. Mater. Sci. Technol., 2010, 26, p 237

    Google Scholar 

  48. L. Lodgaard and N. Ryum, Precipitation of Chromium Containing Dispersoids in Al-Mg-Si Alloys, Mater. Sci. Technol., 2000, 16, p 599–604

    CAS  Google Scholar 

  49. R. Kemsies, B. Milkereit, S. Wenner, R. Holmestad, and O. Kessler, In Situ DSC Investigation Into the Kinetics and Microstructure of Dispersoid Formation in Al-Mn-Fe-Si(-Mg) Alloys, Mater. Des., 2018, 146, p 96–107

    CAS  Google Scholar 

  50. D. Askeland, P. Fulay, and W. Wright, The Science and Engineering of Materials, Cengage Learning, Boston, 2011

    Google Scholar 

  51. M. Rahimian, S. Amirkhanlou, P. Blake, and S. Ji, Nanoscale Zr-Containing Precipitates: A Solution for Significant Improvement of High-Temperature Strength in Al-Si-Cu-Mg Alloys, Mater. Sci. Eng. A, 2018, 721, p 328–338

    CAS  Google Scholar 

  52. P. Hidnert and H. Krider, Thermal Expansion of Aluminum and Some Aluminum Alloys, J. Res. Natl. Bur. Stand., 1952, 48(3), p 209–220

    CAS  Google Scholar 

  53. W. Kasprzak, D. Chen, and S. Shaha, Heat Treatment Development for a Rapidly Solidified Heat Resistant Cast Al-Si Alloy, J. Mater. Eng. Perform., 2013, 22(7), p 1839–1847

    CAS  Google Scholar 

  54. H. Lopez, Microstructural Features Associated with the Effect of Temperature on the Dimensional Stability of an Automotive Al-A319 Alloy, AIMS Mater. Sci., 2016, 3(2), p 634–644

    CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Maxion Wheels Italia Srl for providing the alloy, F. Peli (Dept. of Mechanical and Industrial Engineering of the University of Brescia) for his support in tensile samples preparation and Dr. L. Montesano (Dept. of Mechanical and Industrial Engineering of the University of Brescia) for SEM analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marialaura Tocci.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tocci, M., Donnini, R., Angella, G. et al. Tensile Properties of a Cast Al-Si-Mg Alloy with Reduced Si Content and Cr Addition at High Temperature. J. of Materi Eng and Perform 28, 7097–7108 (2019). https://doi.org/10.1007/s11665-019-04438-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-019-04438-9

Keywords

Navigation