Skip to main content
Log in

Fatigue Failure Analysis and Life Prediction of Aeroengine Compressor Components

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

In order to study the fatigue properties and fatigue life prediction model of aeroengine compressor components made of Ni-based superalloy GH4169 under simplified service condition, creep–fatigue test and fatigue test under different stresses at 650 °C were performed. The morphology of fatigue damage was analyzed. A modified Bannantine life prediction model which considers fatigue damage as the foundation and creep–fatigue damage factor as the correction was suggested and explained the different failure contributions between fatigue damage and creep damage, which leads to less logarithmic relative error compared with common method. The finite element analyses of compressor’s mechanical properties were conducted by the software ABAQUS to find failure position, and mechanical parameters of failure location were obtained by statistical analysis. The results indicated that the fatigue life of compressor components was predicted by optimized model, which exhibited a good agreement with the experiment data, which has important reference value for the engineering application of aeroengine compressors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. J.H. Du, X.D. Lu, Q. Deng, and Z.N. Bi, Progress in the Research and Manufacture of GH4169 Alloy, J. Iron. Steel Res. Int., 2015, 22(8), p 657–663

    Article  Google Scholar 

  2. S. Azadian, L.Y. Wei, and R. Warren, Delta Phase Precipitation in Inconel 718, Mater. Charact., 2004, 53(1), p 7–16

    Article  CAS  Google Scholar 

  3. D.Y. Cai, W.H. Zhang, P.L. Nie, W.C. Liu, and M. Yao, Dissolution Kinetics of δ Phase and Its Influence on the Notch Sensitivity of Inconel 718, Mater. Charact., 2007, 58(3), p 220–225

    Article  CAS  Google Scholar 

  4. A. Devaux, L. Naze, R. Molins, A. Pineau, A. Organista, J.Y. Guedou, J.F. Uginet, and P. Heritier, Gamma Double Prime Precipitation Kinetic in Alloy 718, Mater. Sci. Eng., A, 2008, 486(1), p 117–122

    Article  Google Scholar 

  5. J.H. Du, Q. Deng, J.L. Qu, X.D. Lu, M.Q. Wang, Z.N. Bi, and T.H. Xu, Development Trend of Manufacturing Technology of Alloy GH4169 Disk Forging, J. Iron Steel Res. Int., 2011, 18(8), p 626–633

    Google Scholar 

  6. X. Li, S. Ma, and F.J. Meng, Surface Integrity of GH4169 Affected by Cantilever Finish Grinding and the Application in Aero-engine Blades, Chin. J. Aeronaut, 2015, 28(5), p 1539–1545

    Article  Google Scholar 

  7. X.Y. Tong, D.J. Wang, and H. Xu, Investigation of Cyclic Hysteresis Energy in Fatigue Failure Process, Int. J. Fatigue, 1989, 11(5), p 353–359

    Article  CAS  Google Scholar 

  8. K. Wang, M.Q. Li, J. Luo, and C. Li, Effect of the δ Phase on the Deformation Behavior in Isothermal Compression of Superalloy GH4169, Mater. Sci. Eng. A, 2011, 528(13–14), p 4723–4731

    Article  Google Scholar 

  9. X.D. Lu, J.H. Du, and Q. Deng, High Temperature Structure Stability of GH4169 Superalloy, Mater. Sci. Eng. A, 2013, 559(1), p 623–628

    Article  CAS  Google Scholar 

  10. C.L. Hale, W.S. Rollings, and M.L. Weaver, Activation Energy Calculations for Discontinuous Yielding in Inconel 718SPF, Mater. Sci. Eng. A, 2001, 300, p 153–164

    Article  Google Scholar 

  11. J. Weiss, T. Richeton, F. Louchet et al., Evidence for Universal Intermittent Crystal Plasticity from Acoustic Emission and High-Resolution Extensometry Experiments, Phys. Rev. B, 2007, 76(224110), p 1–8

    Google Scholar 

  12. C.H. Qin, X.C. Zhang, S. Ye, and S.T. Tu, Grain Size Effect on Multi-scale Fatigue Crack Growth Mechanism of Nickel-Based Alloy GH4169, Eng. Fract. Mech., 2015, 142, p 140–153

    Article  Google Scholar 

  13. J.D. Guo, T.T. Shan, C.Z. Xian, Q.Q. Wang, and C.H. Qin, Grain Size Effect on the Small Fatigue Crack Initiation and Growth Mechanisms of Nickel-Based Superalloy GH4169, Eng. Fract. Mech., 2015, 134, p 433–450

    Article  Google Scholar 

  14. D.G. Shang, G.Q. Sun, J.H. Chen, N. Cai, and C.L. Yan, Multiaxial Fatigue Behavior of Ni-Based Superalloy GH4169 at 650 °C, Mater. Sci. Eng. A, 2006, 432(1–2), p 231–238

    Article  Google Scholar 

  15. D.G. Shang, G.Q. Sun, C.L. Yan, J.H. Chen, and N. Cai, Creep-Fatigue Life Prediction Under Fully-Reversed Multiaxial Loading at High Temperatures, Int. J. Fatigue, 2007, 29(4), p 705–712

    Article  CAS  Google Scholar 

  16. G.Q. Sun, D.G. Shang, and M. Bao, Multiaxial Fatigue Damage Parameter and Life Prediction Under Low Cycle Loading for GH4169 Alloy and Other Structural Materials, Int. J. Fatigue, 2010, 32(7), p 1108–1115

    Article  CAS  Google Scholar 

  17. G.J. Deng, S.T. Tu, X.C. Zhang, J. Wang, C.C. Zhang, X.Y. Qian, and Y. Wang, Small Fatigue Crack Initiation and Growth Mechanisms of Nickel-Based Superalloy GH4169 at 650 °C in Air, Eng. Fract. Mech., 2016, 153, p 35–49

    Article  Google Scholar 

  18. G. Chen, Y. Zhang, D.K. Xu, X. Chen, and Y.C. Lin, Low Cycle Fatigue and Creep-Fatigue Interaction Behavior of Nickel-Base Superalloy GH4169 at Elevated Temperature of 650 °C, Mater. Sci. Eng. A, 2016, 655, p 175–182

    Article  CAS  Google Scholar 

  19. R.Z. Wang, B. Chen, X.C. Zhang, S.T. Tu, J. Wang, and C.C. Zhang, The Effects of Inhomogeneous Microstructure and Loading Waveform on Creep-Fatigue Behavior in a Forged and Precipitation Hardened Nickel-Based Superalloy, Int. J. Fatigue, 2017, 97, p 190–201

    Article  CAS  Google Scholar 

  20. Q. Liao, Y. Yang, and J. Yang, A General Energy-Based Model for Fatigue Life Prediction of High-Temperature Structural Materials, International Conference on Quality, Reliability, Risk, Maintenance, and Safety Engineering, 2012, p 236–239

  21. B. Li, S.L. Wang, and D. Yang, Stress and Fatigue Life Monitoring of High Temperature Bearing Elements Based on the Solution of Inverse Conduction Problem, International Conference on Condition Monitoring and Diagnosis, 2008, p 184–187

  22. B. Fang, Y. Hong, and Y. Bai, Experimental and Theoretical Study on Numerical Density Evolution of Short Fatigue Cracks, Chin. J. Theor. Appl. Mech., 1995, 11(2), p 144–152

    Google Scholar 

  23. Y. Hong, L. Zheng, and Y. Qiao, Simulations and Experiments of Stochastic Characteristics for Collective Short Fatigue Cracks in Steels, Fatigue Fract. Eng. Mater. Struct., 2002, 25(5), p 459–466

    Article  CAS  Google Scholar 

  24. S. Lecheb, T. Djedid, and A.A. Chellil, Fatigue Crack Initiation and Vibration Prediction Life of Turbine Blade, International Conference on Modeling, Simulation and Applied Optimization, 2013, p 1–6

  25. J.L. Kerrebrock, Aircraft Gas Turbine Engine Technology, The MIT Press, London, 1992

    Google Scholar 

  26. D. Fournier and A. Pineau, Low Cycle Fatigue Behavior of Inconel 718 at 298 K and 823 K, Metall. Trans. A, 1977, 8(7), p 1095–1105

    Article  Google Scholar 

  27. M.R. Bache, W.J. Evans, and M.C. Hardy, The Effects of Environment and Loading Waveform on Fatigue Crack Growth in Inconel 718, Int. J. Fatigue, 1999, 21(99), p S69–S77

    Article  CAS  Google Scholar 

  28. M. Stucke, T. Nicholas, and M.B. Khobaib, Environmental Aspects in Creep Crack Growth in a Nickel Base Superalloy, Fracture, 1984, p 3967–3975

  29. X. Xiao, H. Xu, and X.Z. Qin, Thermal Fatigue Behaviors of Three Cast Nickel Base Superalloys, Acta Metall. Sin., 2011, 47(9), p 1129–1134

    CAS  Google Scholar 

  30. L.Z. He, Q. Zheng, X.F. Sun et al., High-Temperature Creep-Deformation Behavior of the Ni-Based Superalloy M963, Metall. Mater. Trans. A, 2005, 36(9), p 2385–2391

    Article  Google Scholar 

  31. L.M. Kachanov, Rupture Time Under Creep Conditions, Int. J. Fract., 1999, 97(1–4), p 11–18

    Article  Google Scholar 

  32. Y.N. Rabotnov, F.A. Leckie, and W. Prager, Creep Problems in Structural Members, J. Appl. Mech., 1970, 37(1), p 249

    Article  Google Scholar 

  33. H. Jing, D. Su, and L. Xu, Finite Element Simulation of Creep-Fatigue Crack Growth Behavior for p91 Steel at 625 °C Considering Creep-Fatigue Interaction, Int. J. Fatigue, 2017, 98, p 41–52

    Article  CAS  Google Scholar 

  34. F. Bassi, S. Foletti, and A.L. Conte, Creep Fatigue Crack Growth and Fracture Mechanisms of t/p91 Power Plant Steel, Mater. High Temp., 2015, 32(3), p 250–255

    Article  CAS  Google Scholar 

  35. K.B.S. Rao, H.P. Meurer, and H. Schuster, Creep-Fatigue Interaction of Inconel 617 at 950 °C in Simulated Nuclear Reactor Helium, Mater. Sci. Eng., A, 1988, 104(88), p 37–51

    Google Scholar 

  36. H. Yang, R. Bao, and J. Zhang, Creep-Fatigue Crack Growth Behavior of a Nickel-Based Powder Metallurgy Superalloy Under High Temperature, Eng. Fail. Anal., 2011, 18(3), p 1058–1066

    Article  CAS  Google Scholar 

  37. K. Prasad, R. Sarkar, P. Ghosal et al., High Temperature Low Cycle Fatigue Deformation Behaviour of Forged IN 718 Superalloy Turbine Disc, Mat Sci Eng A, 2013, 568(4), p 239–245

    Article  CAS  Google Scholar 

  38. G.A. Osinkolu, G. Onofrio, and M. Marchionni, Fatigue Crack Growth in Polycrystalline in 718 Superalloy, Mater. Sci. Eng., A, 2003, 356(1–2), p 425–433

    Article  Google Scholar 

  39. S. Zhang and D. Zhao, Aerospace Materials Handbook, Taylor & Francis, Boca Raton, 2013

    Google Scholar 

  40. C.C. Zhang, Fatigue Life Prediction of Structures in HCF Region Under Complex Stress Field. Ph.D. thesis, Nanjing University of Aeronautics and Astronautics, 2010

Download references

Acknowledgments

The authors gratefully acknowledge the financial support of Tianjin Science and Technology Support Project (Grant No. 18JCTPJC66800).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yajun Chen.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Y., Zhang, X., Wang, F. et al. Fatigue Failure Analysis and Life Prediction of Aeroengine Compressor Components. J. of Materi Eng and Perform 28, 6418–6427 (2019). https://doi.org/10.1007/s11665-019-04370-y

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-019-04370-y

Keywords

Navigation