Skip to main content
Log in

A Study on the Microstructures and Properties of Selective Laser Melted Babbitt Metals

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

Babbitt metal cubes were prepared by means of selected laser melting (SLM) process using Sn—11% Sb—6% Cu alloy powders; their microstructures were studied using optical microscope (OM), SEM, EDS, XRD and DSC; and their mechanical properties were tested using Vickers hardness and tensile methods. The results show that fully dense Babbitt metal components can be prepared by using appropriate SLM process parameters and an interlayer staggered laser scanning strategy. Anisotropy characteristics appear in both the microstructure and mechanical properties of SLM-Babbitt cubic specimens. The average hardness was in the range of 32.5 HV0.05 to 35.3 HV0.05. Both tensile strength and elongation were somewhat higher in a direction parallel to the laser scanning speed (Y axis) than in a direction perpendicular to the laser scanning speed (X axis). The strengthening mechanism is suggested to include solid solution strengthening of oversaturated Sb in the Sn matrix, as well as dispersion strengthening of finely dispersed SnSb and Cu6Sn5 particles. The overgrown acicular Cu6Sn5 phases at low laser scanning speeds and void formation at higher laser scanning speeds seriously deteriorate the mechanical properties of the SLM-Babbitt specimens.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. V.V. Burenin, New Slip Bearings for Rotating Shafts, Russ. Eng. Res., 2012, 32(4), p 412–416

    Article  Google Scholar 

  2. A.S. Lisyanskii, N.P. Egorov, M.I. Shklyarov, N.S. Lebed’ko, A.F. Spiridonov, R.K. Kovalskii, and A.E. Yazykov, Generalization of the Results from Investigations on Perfecting the Design of Journal Bearings for Large Steam Turbines for Nuclear Power Stations, Therm. Eng., 2006, 53(2), p 81–87

    Article  Google Scholar 

  3. J. Thomson, R. Zavadil, M. Sahoo, A. Dadouche, W. Dmochowski, and M. Conlon, Development of a Lead-Free Bearing Material for Aerospace Applications, Int. J. Metal Cast., 2010, 4(1), p 19–30

    Article  CAS  Google Scholar 

  4. A. Zeren, E. Feyzullahoglu, and M. Zeren, A Study on Tribological Behavior of Tin-Based Bearing Material in Dry Sliding, Mater. Des., 2007, 28(1), p 318–323

    Article  CAS  Google Scholar 

  5. R. Élbaeva and K.G. Tkhagapsoev, Structure of the Transition Layer in Steel-Babbitt Bimetals, Met. Sci. Heat Treat., 1978, 20(8), p 661–663

    Article  Google Scholar 

  6. N.V. Kobernik, R.S. Mikheev, and S.S. Kremlev, Plasma-Powder Deposition of Babbitt Alloys, Weld. Int., 2014, 29(8), p 654–656

    Article  Google Scholar 

  7. S. Yu, S.V. Korobov, M.A. Nevezhin, V.V. Filippov, B.A. Ilyushin, L.V. Potekhin, and L.V. Gogolev, Effect of Production Methods on Tribological Characteristics of Babbitt Coatings, J. Frict. Wear., 2012, 33(3), p 190–194

    Article  CAS  Google Scholar 

  8. W.E. Frazier, Metal Additive Manufacturing: A Review, J. Mater. Eng. Perform., 2014, 23(6), p 1917–1928

    Article  CAS  Google Scholar 

  9. B.H. Jared, M.A. Aguilo, L.L. Beghini, B.L. Boyce, B.W. Clark, A. Cook, B.J. Kaehr, and J. Robbins, Additive Manufacturing: Toward Holistic Design, Scr. Mater., 2017, 135, p 141–147

    Article  CAS  Google Scholar 

  10. G.X. Zhao, Z.Y. Wei, J. Du, W. Liu, X. Wang, and Y.F. Yao, Additive Manufacturing of Sn63Pb37 Component by Micro-Coating, Proc. Eng., 2016, 157, p 193–199

    Article  CAS  Google Scholar 

  11. X. Fang, J. Du, Z.Y. Wei, P.F. He, H. Bai, X. Wang, and B.H. Lu, An Investigation on Effects of Process Parameters in Fused-Coating Based Metal Additive Manufacturing, J. Manuf. Process., 2017, 28, p 383–389

    Article  Google Scholar 

  12. G.X. Zhao, Z.Y. Wei, J. Du, R.W. Geng, and S.Y. Xu, Mechanical Properties of Sn63Pb37 Components by Fused Coating Technology, Addit. Manuf., 2018, 22, p 388–393

    Article  CAS  Google Scholar 

  13. C.Y. Yap, C.K. Chua, and Z.L. Dong, An Effective Analytical Model of Selective Laser Melting, Virtual Phys. Prototyp., 2016, 11(1), p 21–26

    Article  Google Scholar 

  14. I. Yadroitsev, P. Bertrand, and I. Smurov, Parametric Analysis of the Selective Laser Melting Process, Appl. Surf. Sci., 2007, 253(19), p 8064–8069

    Article  CAS  Google Scholar 

  15. Y. Li, D.Q. Pang, W.N. Liu, Q. Ma, Q. Song, and M.L. Hu, Polarization Modulation of Terahertz Wave by Femtosecond Laser Additive Manufactured Tin Grating, Infrared Phys. Technol., 2018, 95, p 76–80

    Article  CAS  Google Scholar 

  16. X. Su and Y. Yang, Research on Track Overlapping During Selective Laser Melting of Powders, J. Mater. Process. Technol., 2012, 212(10), p 2074–2079

    Article  Google Scholar 

  17. F.A. Sadykov, N.P. Barykin, I.S. Valeev, and V.N. Danilenko, Influence of the Structural State on Mechanical Behavior of Tin Babbitt, J. Mater. Eng. Perform., 2003, 12(1), p 29–36

    Article  CAS  Google Scholar 

  18. S.W. Chen, A.R. Zi, W. Gierlotka, C.F. Yang, C.H. Wang, S.K. Lin, and C.M. Hsu, Phase Equilibria of Sn–Sb–Cu System, Mater. Chem. Phys., 2012, 132, p 703–715

    Article  CAS  Google Scholar 

  19. Y.J. Liu, S.J. Li, H.L. Wang, W.T. Hou, Y.L. Hao, R. Yang, T.B. Sercombe, and L.C. Zhang, Microstructure, Defects and Mechanical Behavior of Beta-Type Titanium Porous Structures Manufactured by Electron Beam Melting and Selective Laser Melting, Acta Mater., 2016, 113, p 56–67

    Article  CAS  Google Scholar 

  20. T.M. Mower and M.J. Long, Mechanical Behavior of Additive Manufactured, Powder-Bed Laser-Fused Materials, Mater. Sci. Eng. A, 2016, 651, p 198–213

    Article  CAS  Google Scholar 

  21. B.A. Potekhin, V.V. Yushin, and A.S. Khristolyubov, Effect of Casting Methods on the Structure and Properties of Tin Babbit, Met. Sci. Heat Treat., 2009, 51(7–8), p 378–382

    Article  CAS  Google Scholar 

  22. F. Cabanettes, A. Joubert, G. Chardon, V. Dumas, J. Rech, C. Grosjean, and Z. Dimkovski, Topography of as Built Surfaces Generated in Metal Additive Manufacturing: A Multi Scale Analysis from Form to Roughness, Precis. Eng., 2018, 52, p 249–265

    Article  Google Scholar 

  23. Y. Tian, D. Tomus, P. Rometsch, and X. Wu, Influences of Processing Parameters on Surface Roughness of Hastelloy X Produced by Selective Laser Melting, Addit. Manuf., 2017, 13, p 103–112

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xingke Zhao.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, X., Lai, R. & Hai, X. A Study on the Microstructures and Properties of Selective Laser Melted Babbitt Metals. J. of Materi Eng and Perform 28, 5433–5440 (2019). https://doi.org/10.1007/s11665-019-04332-4

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-019-04332-4

Keywords

Navigation