Skip to main content
Log in

The Effect of Temper, Grain Orientation, and Composition on the Fatigue Properties of Forged Aluminum-Lithium 2195 Alloy

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

The AA2195 alloy was designed for aerospace applications. Fatigue failures are among the major causes of aircraft failures. However, there exist limited studies on fatigue behavior of forged AA2195 alloy. Samples of AA2195 alloys were taken from an aircraft wheel and an open-die hand-forged billet. A total of 44 aircraft wheel samples and 67 hand-forged samples were tested. Aircraft wheel samples taken from the hub and tubewell were prepared in two tempers: T6 (peak aged) and T8 (cold worked and aged). The hand-forged samples were prepared in three temper conditions (T6, T8-4% strain, and T8-8% strain) and cut in the transverse (T) direction, short-transverse (S) direction and 45° between these directions (ST45). The study revealed that T8 temper, while providing higher strength, showed longer fatigue life compared to T6 temper. The anisotropic behavior of AA2195 hand forgings showed the trend NT > NS > NST45. The forged aircraft wheels at different locations and tempers showed similar fatigue life at high stresses. At low stresses, different locations showed significant differences in fatigue lives. The reason may be related to the variance of manufacturing and thermomechanical processes experienced by different locations on a complex-shaped wheel. The AA2195 aircraft wheel samples were also compared with samples taken from a similar aircraft wheel but made of AA2014 alloy. The results revealed that the addition of lithium significantly improved fatigue life.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. N. Nayan, N.P. Gurao, S.V.S. Narayana Murty, A.K. Jha, B. Pant, S.C. Sharma, and K.M. George, Microstructure and Micro-texture Evolution During Large Strain Deformation of an Aluminum–Copper–Lithium Alloy AA 2195, Mater. Des., 2015, 65, p 862–868

    Article  CAS  Google Scholar 

  2. N. Jiang, G. Xiang, and Z.Q. Zheng, Microstructure Evolution of Aluminum–Lithium Alloy 2195 Undergoing Commercial Production, Trans. Nonferrous Met. Soc. China, 2010, 20(5), p 740–745

    Article  CAS  Google Scholar 

  3. N. Nayan, S.V.S. Narayana Murty, A.K. Jha, B. Pant, S.C. Sharma, K.M. George, and G.V.S. Sastry, Processing and Characterization of Al-Cu-Li Alloy AA2195 Undergoing Scale Up Production Through the Vacuum Induction Melting Technique, Mater. Sci. Eng. A, 2013, 576, p 21–28

    Article  CAS  Google Scholar 

  4. Z.X. Zhu, J. Han, C. Gao, M. Liu, J.W. Song, Z.W. Wang, and H.J. Li, Microstructures and Mechanical Properties of Al-Li 2198-T8 Alloys Processed by Two Different Severe Plastic Deformation Methods: A Comparative Study, Mater. Sci. Eng. A, 2017, 681, p 65–73

    Article  CAS  Google Scholar 

  5. A. Hekmat-Ardakan, E.M. Elgallad, F. Ajersch, and X.G. Chen, Microstructural Evolution and Mechanical Properties of As-Cast and T6-Treated AA2195 DC Cast Alloy, Mater. Sci. Eng. A, 2012, 558, p 76–81

    Article  CAS  Google Scholar 

  6. L. Wang, M. Hao, G.A. Li, and G.H. Chen, In-situ Investigation of the Fracture Behaviors of 2195-T8 Aluminum-Lithium Alloy, in MATEC Web Conference, vol 67(05028) (2016), p 1–6

    Article  Google Scholar 

  7. A.A. El-Aty, Y. Xu, X.Z. Guo, S.H. Zhang, Y. Ma, and D.Y. Chen, Strengthening Mechanisms, Deformation Behavior, and Anisotropic Mechanical Properties of Al-Li Alloys: A Review, J. Adv. Res., 2017, 10, p 49–67

    Article  Google Scholar 

  8. N. Nayan, S.V.S. Narayana Murty, A.K. Jha, B. Pant, S.C. Sharma, K.M. George, and G.V.S. Sastry, Mechanical Properties of Aluminum–Copper–Lithium Alloy AA2195 at Cryogenic Temperatures, Mater. Des., 2014, 58, p 445–450

    Article  CAS  Google Scholar 

  9. W.T. Wu, Z.Y. Liu, S. Bai, F.D. Li, M. Liu, and A. Wang, Anisotropy in Fatigue Crack Propagation Behavior of Al-Cu-Li Alloy Thick Plate, Mater. Charact., 2017, 131, p 440–449

    Article  CAS  Google Scholar 

  10. J. Chen, Q.L. Pan, X.H. Yu, M.J. Li, H. Zou, H. Xiang, Z.Q. Huang, and Q. Hu, Effect of Annealing Treatment on Microstructure and Fatigue Crack Growth Behavior of Al-Zn-Mg-Sc-Zr Alloy, J. Cent. South Univ., 2018, 25(5), p 961–975

    Article  CAS  Google Scholar 

  11. H. Aydin, M. Tutar, A. Durmuş, A. Bayram, and T. Sayaca, Effect of Welding Parameters on Tensile Properties and Fatigue Behavior of Friction Stir Welded 2014-T6 Aluminum Alloy, Trans. Indian Inst. Met., 2012, 65(1), p 21–30

    Article  CAS  Google Scholar 

  12. Q.B. Yang, X.Z. Wang, X. Li, Z.H. Deng, Z.H. Jia, Z.Q. Zhang, G.J. Huang, and Q. Liu, Hot Deformation Behavior and Microstructure of AA2195 Alloy Under Plane Strain Compression, Mater. Charact., 2017, 131, p 500–507

    Article  CAS  Google Scholar 

  13. Z.W. Chen, K. Zhao, and L. Fan, Combinative Hardening Effects of Precipitation in a Commercial Aged Al-Cu-Li-X Alloy, Mater. Sci. Eng. A, 2013, 588, p 59–64

    Article  CAS  Google Scholar 

  14. A. Medjahed, A. Henniche, M. Derradji, T.F. Yu, Y. Wang, R.Z. Wu, L.G. Hou, J.H. Zhang, X.L. Li, and M.L. Zhang, Effects of Cu/Mg Ratio on the Microstructure, Mechanical and Corrosion Properties of Al-Li-Cu-Mg-X Alloys, Mater. Sci. Eng. A, 2018, 718, p 241–249

    Article  CAS  Google Scholar 

  15. J.F. Li, Z.H. Ye, D.Y. Liu, Y.L. Chen, X.H. Zhang, X.Z. Xu, and Z.Q. Zheng, Influence of Pre-deformation on Aging Precipitation Behavior of Three Al-Cu-Li Alloys, Acta Metall. Sin. (Engl. Lett.), 2017, 30(2), p 33–145

    Article  Google Scholar 

  16. J.H. Kim, J.H. Jeun, H.J. Chun, Y.R. Lee, J.T. Yoo, J.H. Yoon, and H.S. Lee, Effect of Precipitates on Mechanical Properties of AA2195, J. Alloys Compd., 2016, 669, p 187–198

    Article  CAS  Google Scholar 

  17. O.S. Es-Said, C.J. Parrish, C.A. Bradberry, J.Y. Hassoun, R.A. Parish, A. Nash, and N.C. Smythe, Effect of Stretch Orientation and Rolling Orientation on the Mechanical Properties of 2195 Al-Cu-Li Alloy, J. Mater. Eng. Perform., 2011, 20(7), p 1171–1179

    Article  CAS  Google Scholar 

  18. H.Y. Li, D.S. Huang, W. Kang, J.J. Liu, Y.X. Ou, and D.W. Li, Effect of Different Aging Processes on the Microstructure and Mechanical Properties of a Novel Al-Cu-Li Alloy, J. Mater. Sci. Technol., 2016, 32(10), p 1049–1053

    Article  Google Scholar 

  19. M.C. Chaturvedi and D.L. Chen, Effect of Specimen Orientation and Welding on the Fracture and Fatigue Properties of 2195 Al-Li Alloy, Mater. Sci. Eng. A, 2004, 387, p 465–469

    Article  Google Scholar 

  20. P. Khanikar, Y. Liu, and M.A. Zikry, Experimental and Computational Investigation of the Dynamic Behavior of Al-Cu-Li Alloys, Mater. Sci. Eng. A, 2014, 604, p 67–77

    Article  CAS  Google Scholar 

  21. A. Wang, Z.Y. Liu, M. Liu, W.T. Wu, S. Bai, and R.X. Yang, Texture and Tempered Condition Combined Effects on Fatigue Behavior in an Al-Cu-Li Alloy, J. Mater. Eng. Perform., 2017, 26(6), p 2453–2458

    Article  CAS  Google Scholar 

  22. R.J. Rioja and J. Liu, The Evolution of Al-Li Base Products for Aerospace and Space Applications, Metall. Mater. Trans. A, 2012, 43(9), p 3325–3337

    Article  CAS  Google Scholar 

  23. T. Dorin, A. Deschamps, F.D. Geuser, and F. Robaut, Impact of Grain Microstructure on the Heterogeneity of Precipitation Strengthening in an Al-Li-Cu Alloy, Mater. Sci. Eng. A, 2015, 627, p 51–55

    Article  CAS  Google Scholar 

  24. R. Crooks, Z. Wang, V.I. Levit, and R.N. Shenoy, Micro-texture, Microstructure and Plastic Anisotropy of AA2195, Mater. Sci. Eng. A, 1998, 257(1), p 145–152

    Article  Google Scholar 

  25. ISO 1143, Metals—Rotating Bar Bending Fatigue Testing, 1975

  26. Weber Metals, Inc., Paramount, CA. http://web.webermetals.com/. Accessed June 2018

  27. L.P. Xu, Q.Y. Wang, and M. Zhou, Micro-crack Initiation and Propagation in a High Strength Aluminum Alloy During Very High Cycle Fatigue, Mater. Sci. Eng. A, 2018, 715, p 404–413

    Article  CAS  Google Scholar 

  28. D.R. Askeland, P.P. Fulay, and W.J. Wright, The science and engineering of materials, 6th edn. Cengage Learning (2011), p 266–284. (Print).

  29. D.D. Tian, X.S. Liu, G.Q. He, Y. Shen, S.Q. Lv, and Q.G. Wang, Low Cycle Fatigue Behavior of Casting A319 Alloy Under Two Different Aging Conditions, Mater. Sci. Eng. A, 2016, 654, p 60–68

    Article  CAS  Google Scholar 

  30. F. Alzubi, M. Timko, Y. Li, R. Toal, K. Tovalin, and O.S. Es-Said, Large Versus Small Grain Sizes on Fatigue Life of Aluminum Aircraft Wheels, Defect Diffus. Forum, 2019, 391, p 174–194

    Article  Google Scholar 

  31. P.S. De, R.S. Mishra, and J.A. Baumann, Characterization of High Cycle Fatigue Behavior of a New Generation Aluminum Lithium Alloy, Acta Mater., 2011, 59(15), p 5946–5960

    Article  CAS  Google Scholar 

  32. N.J. Kim and E.W. Lee, Effect of T1 Precipitate on the Anisotropy of Al-Li Alloy 2090, Acta Metall. Mater., 1993, 41(3), p 941–948

    Article  CAS  Google Scholar 

  33. M. Gazizov and R. Kaibyshev, High Cyclic Fatigue Performance of Al-Cu-Mg-Ag Alloy Under T6 and T840 Conditions, Trans. Nonferrous Met. Soc. China, 2017, 27(6), p 1215–1223

    Article  CAS  Google Scholar 

  34. Q.K. Xia, Z.Y. Liu, and H. Wang, Fatigue Property of 2A12 Aluminum Alloy for T6 and T8 Aging, Trans. Mater. Heat Treat., 2014, 35(4), p 67–71

    CAS  Google Scholar 

  35. B.I. Rodgers and P.B. Prangnell, Quantification of the Influence of Increased Pre-stretching on Microstructure–Strength Relationships in the Al-Cu-Li Alloy AA2195, Acta Mater., 2016, 108, p 55–67

    Article  CAS  Google Scholar 

  36. Y.X. Wang, G.Q. Zhao, X. Xu, X.X. Chen, and W.D. Zhang, Microstructures and Mechanical Properties of Spray Deposited 2195 Al-Cu-Li Alloy Through Thermo-Mechanical Processing, Mater. Sci. Eng. A, 2018, 727, p 78–89

    Article  CAS  Google Scholar 

  37. C. Laird and G.C. Smith, Crack Propagation in High Stress Fatigue, Philos. Mag., 1962, 7(77), p 847–857

    Article  CAS  Google Scholar 

  38. T. Kermanidis, A.D. Zervaki, V. Modas, A.N. Chamos, and S.G. Pantelakis, Fatigue Performance of Pre-corroded 6xxx Aluminum Alloy Laser Beam Welds With Dissimilar Heat Treatment, Procedia Eng., 2014, 74, p 22–26

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors highly acknowledge and thank Mr. Ye Thura Hein (Loyola Marymount University) for his help in revising and editing the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Omar S. Es-Said.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shen, K., Timko, M., Li, YJ. et al. The Effect of Temper, Grain Orientation, and Composition on the Fatigue Properties of Forged Aluminum-Lithium 2195 Alloy. J. of Materi Eng and Perform 28, 5625–5638 (2019). https://doi.org/10.1007/s11665-019-04300-y

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-019-04300-y

Keywords

Navigation