Skip to main content
Log in

Effect of Dual-Phase Heat Treatment on Microstructure and Mechanical Properties of S135 High-Strength Drill Pipe Steel

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

Effect of dual-phase heat treatment (DPHT) on microstructure and mechanical properties of S135 high-strength drill pipe steel was studied by means of optical microscope, scanning electron microscope and mechanical property testing. The results show that the ferritemartensite dual-phase microstructures were obtained at 760-800 °C. With increase in DPHT temperature, the volume fraction of martensite increases and the ferrite decreases. When the DPHT temperature is low, martensite is distributed as an island on the ferrite matrix, and ferrite is distributed as an island on the martensite matrix when the DPHT temperature is high. The hardness and strength of the steel increase, the plasticity and toughness decrease, the steel changes from ductile fracture to brittle fracture and the micro-fracture morphology changes from dimple to cleavage with increase in DPHT temperature. The strain hardening exponent of the as-received steel shows one ‘n’ value, but exhibits two ‘n’ values after DPHT. When the DPHT temperature is 750 °C, the relative content of martensite in the duplex structure is 15-20%, and the impact energy of the steel is similar to that of the as-received S135 drill pipe steel, and the strength is increased by about 15%. Micropores and micro-cracks on the subsurface of tensile fracture surface are mainly formed at the martensite/ferrite phase boundary or in the martensite slit.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. P. Haslberger, S. Holly, W. Ernst, and R. Schnitzer, Microstructure and Mechanical Properties of High-Strength Steel Welding Consumables with a Minimum Yield Strength of 1100 MPa, J. Mater. Sci., 2018, 53, p 6968–6979

    Article  Google Scholar 

  2. M. Liu, X.Q. Cheng, X.G. Li, Z. Jin, and H.X. Liu, Corrosion Behavior of Cr Modified HRB400 Steel Rebar in Simulated Concrete Pore Solution, Constr. Build. Mater., 2015, 93, p 884–890

    Article  Google Scholar 

  3. J. Wang, S. Gao, Y. Wei, and F. Pan, Influence of Y on the Phase Composition and Mechanical Properties of As-Extruded Mg-Zn-Y-Zr Magnesium Alloys, J. Mater. Sci., 2012, 47, p 2005–2010

    Article  Google Scholar 

  4. D.Z. Li, Y.C. Liu, T.X. Cui, J.M. Li, Y.T. Wang, and P.M. Fu, The Effect of Thermo-mechanical Processing Parameters on Microstructure and Mechanical Properties of a Low Carbon, High Strength Steel, Steel Res. Int., 2013, 85, p 307–313

    Article  Google Scholar 

  5. R.K. Singla, S.N. Maiti, and A.K. Ghosh, Mechanical, Morphological, and Solid-State Viscoelastic Responses of Poly(Lactic Acid)/Ethylene-Co-Vinyl-Acetate Super-Tough Blend Reinforced with Halloysite Nanotubes, J. Mater. Sci., 2016, 51, p 10278–10292

    Article  Google Scholar 

  6. P.R. Mondi and S. Sankaran, Development of Ultra-Fine Grained Dual-Phase Microalloyed Steels Through Severe Cold Rolling and Intercritical Annealing, Trans. Indian Inst. Met., 2011, 64, p 89–92

    Article  Google Scholar 

  7. M. Papa, V.S. Sarma, and S. Sankaran, Development of High Strength and Ductile Ultra Fine Grained Dual-Phase Steel with Nano Sized Carbide Precipitates in a V-Nb Microalloyed Steel, Mat. Sci. Eng. A Struct., 2013, 568, p 171–175

    Article  Google Scholar 

  8. A. Karmakar, R.D.K. Misra, S. Neogy, and D. Chakrabarti, Development of Ultra-Fine Grained Dual-Phase Steels: Mechanism of Grain Refinement During Inter-Critical Deformation, Mater. Sci. Forum, 2014, 2014, p 4106–4118

    Google Scholar 

  9. X. Xu, S.V.D. Zwaag, and W. Xu, The Effect of Martensite Volume Fraction on the Scratch and Abrasion Resistance of a Ferrite–Martensite Dual-Phase Steel, Wear, 2016, 348, p 80–88

    Google Scholar 

  10. M. Liu, S.J. Luo, Y. Shen, and X.Z. Lin, Corrosion Fatigue Crack Propagation Behavior of S135 High-Strength Drill Pipe Steel in H2S Environment, Eng. Fail. Anal., 2019, 97, p 493–505

    Article  Google Scholar 

  11. E. Fereiduni and S.S.G. Banadkouki, Ferrite Hardening Response in a Low Alloy Ferrite–Martensite Dual-Phase Steel, J. Alloy. Compd., 2014, 589, p 288–294

    Article  Google Scholar 

  12. S.M. Zamani, S.A. Hassanzadeh-Tabrizi, and H. Sharifi, Failure Analysis of Drill Pipe: A Review, Eng. Fail. Anal., 2016, 59, p 605–623

    Article  Google Scholar 

  13. S. Luo and S. Wu, Effect of Stress Distribution on the Tool Joint Failure of Internal and External Upset Drill Pipes, Mater. Des., 2013, 52, p 308–314

    Article  Google Scholar 

  14. Q.C. Fu, Numerical Simulation of Pressure Loss in Largesize Annulus of Deepwater Drilling Riser, Mater. Sci. Forum, 2016, 857, p 590–597

    Article  Google Scholar 

  15. A.R. Shahani and S.M.H. Sharifi, Contact Stress Analysis and Calculation of Stress Concentration Factors at the Tool Joint of a Drill Pipe, Mater. Des., 2009, 30, p 3615–3621

    Article  Google Scholar 

  16. S. Roy, G. Kannan, S. Suwas, and M.K. Surappa, Effect of Extrusion Ratio on the Microstructure, Texture and Mechanical Properties of (Mg/AZ91)m-SiCp, Composite, Mat. Sci. Eng. A Struct., 2015, 624, p 279–290

    Article  Google Scholar 

  17. G.W. Yang, X.J. Sun, Z.D. Li, X.X. Li, and Y.Q. Long, Effects of Tempering Temperature on Microstructure and Mechanical Properties of 1500 MPa Grade Nb-Ti Low Alloyed Directly Quenched Steel, Mater. Sci. Technol., 2013, 21, p 118–124

    Google Scholar 

  18. Y. Liu, M. Wang, and G. Liu, Effects of Tempering on Microstructure and Mechanical Properties of 40CrNi3MoV Steel, Heat. Treat. Metals, 2014, 39, p 41–45

    Google Scholar 

  19. H. Ashrafi, S. Sadeghzade, R. Emadi, and M. Shamanian, Influence of Heat Treatment Schedule on the Tensile Properties and Wear Behavior of Dual-Phase Steels, Steel Res. Int., 2017, 88, p 1–11

    Article  Google Scholar 

  20. E.A. Ariza, A. Nishikawa, H. Goldenstein, and A.P. Tschiptschin, Characterization and Methodology for Calculating the Mechanical Properties of a TRIP-Steel Submitted to Hot Stamping and Quenching and Partitioning (Q&P), Mat. Sci. Eng. A Struct., 2016, 671, p 54–69

    Article  Google Scholar 

  21. R.M. Wu, J.W. Li, W. Li, X.C. Wu, X.J. Jin, S. Zhou, and L. Wang, Effect of Metastable Austenite on Fracture Resistance of Quenched and Partitioned (Q&P) Sheet Steels, Mat. Sci. Eng. A Struct., 2016, 657, p 57–63

    Article  Google Scholar 

  22. M. Calcagnotto, D. Ponge, E. Demir, and D. Raabe, Orientation Gradients and Geometrically Necessary Dislocations in Ultrafine Grained Dual-Phase Steels Studied by 2D and 3D EBSD, Mat. Sci. Eng. A Struct., 2010, 52, p 2738–2746

    Article  Google Scholar 

  23. J. Kadkhodapour, S. Schmauder, D. Raabe, S. Ziaei-Rad, U. Weber, and M. Calcagnotto, Experimental and Numerical Study on Geometrically Necessary Dislocations and Non-homogeneous Mechanical Properties of the Ferrite Phase in Dual Phase Steels, Acta Mater., 2011, 59, p 4387–4394

    Article  Google Scholar 

  24. L.H. Han, X.Y. Jiang, Y.R. Feng, H.P. Cai, and Q.L. Wang, Effect of Marquenching and Tempering Heat Treatment on Mechanical Behaviors of Drill Pipe Steel, Trans. Mater. Heat. Treat., 2011, 4, p 97–103

    Google Scholar 

  25. S.J. Luo, K. Zhao, and W. Rong, Fatigue Cracks Propagation Behavior of S135 Drill Pipe Steel at Different Stress Ratios, Mater. Mech. Eng., 2013, 37, p 72–76

    Article  Google Scholar 

  26. P. Movaheda, S. Kolahgara, S.P.H. Marashia, M. Pouranvari, and N. Parvin, The Effect of Intercritical Heat Treatment Temperature on the Tensile Properties and Work Hardening Behavior of Ferrite–Martensite Dual-Phase Steel Sheets, Mater. Sci. Eng. A Struct., 2009, 518, p 1–6

    Article  Google Scholar 

  27. H.S. Lee, B.B. Hwang, S. Lee, C.G. Lee, and S.J. Lee, Effects of Martensite Morphology and Tempering on Dynamic Deformation Behavior of Dual-Phase Steels, Metal. Mater. Trans. A, 2004, 35, p 2371–2382

    Article  Google Scholar 

  28. T.W.J.D. Geus, R.H.J. Peerlings, and M.G.D. Geers, Competing Damage Mechanisms in a Two-Phase Microstructure: How Microstructure and Loading Conditions Determine the Onset of Fracture, Int. J. Solids Struct., 2016, 97, p 687–698

    Article  Google Scholar 

  29. K. Hu, J. An, and Y.J. Yoon, Two-Wavelength, Photo-Initiation and Photo-Inhibition Competing for Selective Photo-Patterning of Hydrogel Porous Microstructures, Int. J. Precis. Eng. Manuf., 2018, 19, p 729–735

    Article  Google Scholar 

  30. E. Ahmad, M.M.A. Ziai, and N. Hussain, Effect of Martensite Morphology on Tensile Deformation of Dual-Phase Steel, J. Mater. Eng. Perform., 2012, 21, p 382–387

    Article  Google Scholar 

  31. M. Erdogan and S. Tekeli, The Effect of Martensite Volume Fraction and Particle Size on the Tensile Properties of a Surface-Carburized AISI, 8620 Steel with a Dual-Phase Core Microstructure, Mater. Charact., 2002, 49, p 445–454

    Article  Google Scholar 

  32. S.A. Etesami, M.H. Enayati, A. Taherizadeh, and B. Sadeghian, The Influence of Volume Fraction of Martensite and Ferrite Grain Size on Ultimate Tensile Strength and Maximum Uniform True Strain of Dual-Phase Steel, Indian Inst. Metals, 2016, 69, p 1605–1612

    Article  Google Scholar 

  33. A. Bayram and A. Uğuz, Effect of Microstructure on the Wear Behaviour of a Dual-Phase Steel, Mater. Werkst., 2015, 32, p 249–252

    Article  Google Scholar 

  34. Y.I. Son, Y.K. Lee, K.T. Park, C.S. Lee, and D.H. Shin, Ultrafine Grained Ferrite–Martensite Dual-Phase Steels Fabricated via Equal Channel Angular Pressing: Microstructure and Tensile Properties, Acta Mater., 2005, 53, p 3125–3134

    Article  Google Scholar 

  35. K. Hamad, R.B. Megantoro, and Y.G. Ko, Microstructure and Texture Evolution in Low Carbon Steel Deformed by Differential Speed Rolling (DSR) Method, J. Mater. Sci., 2014, 49, p 6608–6619

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (No. 51801149), China Postdoctoral Science Foundation (No. 2017M620448) and Fund of State Key Laboratory for Strength and Vibration of Mechanical Structures (No. SV2019-KF-10).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Sheji Luo or Ming Liu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luo, S., Liu, M. Effect of Dual-Phase Heat Treatment on Microstructure and Mechanical Properties of S135 High-Strength Drill Pipe Steel. J. of Materi Eng and Perform 28, 3063–3075 (2019). https://doi.org/10.1007/s11665-019-04075-2

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-019-04075-2

Keywords

Navigation