Skip to main content
Log in

Mechanical Response of 3D Printed Bending-Dominated Ligament-Based Triply Periodic Cellular Polymeric Solids

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

Lightweight materials with complex structures such as cellular solids (or foams) have proven to possess desirable properties, specifically in terms of its stiffness, strength, and thermal conductivity, among other mechanical and thermal performance aspects while the density is reduced. The fabrication of such attractive yet complex materials has become possible due to the witnessed advancements in fabrication techniques. However, a major challenge in adapting cellular solids in mechanical design is choosing the appropriate lattice design. Therefore, this paper focuses on studying the compressive mechanical behavior of four different types of cellular solids with topologies based on the mathematically known triply periodic minimal surfaces (TPMS); namely, Diamond (D), I-WP (IWP), Gyroid (G), and Fisher-Koch C(Y) (CY). These cellular materials are 3D printed using the powder bed fusion selective laser sintering technique out of Nylon thermoplastic polymer at various relative densities. The effects of the number of unit cells, type of the ligament-based TPMS architecture, and relative density on the stiffness, yield strength, ultimate strength, and toughness are thoroughly investigated. The results indicated that the effect of the architecture is stronger when the relative density is decreased. Also, the analyses showed that all the tested architectures were bending dominated implying that it could be best applied in shock absorbing and vibration mitigation applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. L.J. Gibson and M.F. Ashby, Cellular Solids: Structure And Properties, Cambridge University Press, Cambridge, 1999

    Google Scholar 

  2. M. Ashby, The Properties of Foams and Lattices, Philos. Trans. R. Soc. Lond. A: Math. Phys. Eng. Sci., 2006, 364(1838), p 15–30

    Article  Google Scholar 

  3. V. Deshpande, M. Ashby, and N. Fleck, Foam Topology: Bending Versus Stretching Dominated Architectures, Acta Mater., 2001, 49(6), p 1035–1040

    Article  Google Scholar 

  4. S. Guessasma, P. Babin, G. Della Valle, and R. Dendievel, Relating Cellular Structure of Open Solid Food Foams to Their Young’s Modulus: Finite Element Calculation, Int. J. Solids Struct., 2008, 45(10), p 2881–2896

    Article  Google Scholar 

  5. W. Lee, Cellular Solids, Structure and Properties, Mater. Sci. Technol., 2000, 16(2), p 233

    Google Scholar 

  6. M.K. Ravari, M. Kadkhodaei, M. Badrossamay, and R. Rezaei, Numerical Investigation on Mechanical Properties of Cellular Lattice Structures Fabricated by Fused Deposition Modeling, Int. J. Mech. Sci., 2014, 88, p 154–161

    Article  Google Scholar 

  7. V. Valuiskikh, Method of Stochastic Simulation Modeling of the Structure, Calculation, and Optimization of the Physicomechanical Characteristics of Foam Plastics, Mech. Compos. Mater., 1990, 25(4), p 429–435

    Article  Google Scholar 

  8. V. Yakushin and U. Stirna, Physicomechanical Characteristics of Spray-on Rigid Polyurethane Foams at Normal and Low Temperatures, Mech. Compos. Mater., 2002, 38(3), p 273–280

    Article  Google Scholar 

  9. R. Gümrük, R. Mines, and S. Karadeniz, Determination of Strain Rate Sensitivity of Micro-struts Manufactured Using the Selective Laser Melting Method, J. Mater. Eng. Perform., 2018, 27(3), p 1016–1032

    Article  Google Scholar 

  10. M.K. Ravari and M. Kadkhodaei, A Computationally Efficient Modeling Approach for Predicting Mechanical Behavior of Cellular Lattice Structures, J. Mater. Eng. Perform., 2015, 24(1), p 245–252

    Article  Google Scholar 

  11. T. Lu, H. Stone, and M. Ashby, Heat Transfer in Open-Cell Metal Foams, Acta Mater., 1998, 46(10), p 3619–3635

    Article  Google Scholar 

  12. L.R. Meza, S. Das, and J.R. Greer, Strong, Lightweight, and Recoverable Three-Dimensional Ceramic Nanolattices, Science, 2014, 345(6202), p 1322–1326

    Article  Google Scholar 

  13. O. Al-Ketan, R. Rezgui, R. Rowshan, H. Du, N.X. Fang, and R.K. Abu Al-Rub, Microarchitected Stretching-Dominated Mechanical Metamaterials with Minimal Surface Topologies, Adv. Eng. Mater., 2018, 20(9), p 1800029

    Article  Google Scholar 

  14. X. Zheng, W. Smith, J. Jackson, B. Moran, H. Cui, D. Chen, J. Ye, N. Fang, N. Rodriguez, T. Weisgraber, and C.M. Spadaccini, Multiscale Metallic Metamaterials, Nat. Mater., 2016, 15, p 1100

    Article  Google Scholar 

  15. A.H. Schoen, Infinite Periodic Minimal Surfaces Without Self-Intersections, NASA Report D5541, 1970

  16. D. Cvijović and J. Klinowski, The Computation of the Triply Periodic I-WP Minimal Surface, Chem. Phys. Lett., 1994, 226(1), p 93–99

    Article  Google Scholar 

  17. S.C. Kapfer, S.T. Hyde, K. Mecke, C.H. Arns, and G.E. Schröder-Turk, Minimal Surface Scaffold Designs for Tissue Engineering, Biomaterials, 2011, 32(29), p 6875–6882

    Article  Google Scholar 

  18. M. Afshar, A.P. Anaraki, H. Montazerian, and J. Kadkhodapour, Additive Manufacturing and Mechanical Characterization of Graded Porosity Scaffolds Designed Based on Triply Periodic Minimal Surface Architectures, J. Mech. Behav. Biomed. Mater., 2016, 62, p 481–494

    Article  Google Scholar 

  19. J. Kadkhodapour, H. Montazerian, A.C. Darabi, A. Zargarian, and S. Schmauder, The Relationships Between Deformation Mechanisms and Mechanical Properties of Additively Manufactured Porous Biomaterials, J. Mech. Behav. Biomed. Mater., 2017, 70, p 28–42

    Article  Google Scholar 

  20. I. Maskery, A.O. Aremu, L. Parry, R.D. Wildman, C.J. Tuck, and I.A. Ashcroft, Effective Design and Simulation of Surface-Based Lattice Structures Featuring Volume Fraction and Cell Type Grading, Mater. Des., 2018, 155, p 220–232

    Article  Google Scholar 

  21. I. Maskery, L. Sturm, A.O. Aremu, A. Panesar, C.B. Williams, C.J. Tuck, R.D. Wildman, I.A. Ashcroft, and R.J.M. Hague, Insights into the Mechanical Properties of Several Triply Periodic Minimal Surface Lattice Structures Made by Polymer Additive Manufacturing, Polymer, 2018, 152, p 62–71

    Article  Google Scholar 

  22. D.W. Abueidda, M. Bakir, R.K. Abu Al-Rub, J.S. Bergström, N.A. Sobh, and I. Jasiuk, Mechanical Properties of 3D Printed Polymeric Cellular Materials with Triply Periodic Minimal Surface Architectures, Mater. Des., 2017, 122, p 255–267

    Article  Google Scholar 

  23. O. Al-Ketan, R. Rowshan, and R.K. Abu Al-Rub, Topology-Mechanical Property Relationship of 3D Printed Strut, Skeletal, and Sheet Based Periodic Metallic Cellular Materials, Addit. Manuf., 2018, 19, p 167–183

    Article  Google Scholar 

  24. O. Al-Ketan, R.K. Abu Al-Rub, and R. Rowshan, The Effect of Architecture on the Mechanical Properties of Cellular Structures Based on the IWP Minimal Surface, J. Mater. Res., 2018, 33(03), p 343–359

    Article  Google Scholar 

  25. C. Yan, L. Hao, A. Hussein, and P. Young, Ti-6Al-4 V Triply Periodic Minimal Surface Structures for Bone Implants Fabricated via Selective Laser Melting, J. Mech. Behav. Biomed. Mater., 2015, 51, p 61–73

    Article  Google Scholar 

  26. D.W. Abueidda, R.K. Abu Al-Rub, A.S. Dalaq, D.-W. Lee, K.A. Khan, and I. Jasiuk, Effective Conductivities and Elastic Moduli of Novel Foams with Triply Periodic Minimal Surfaces, Mech. Mater., 2016, 95, p 102–115

    Article  Google Scholar 

  27. D.W. Abueidda, A.S. Dalaq, R.K. Abu Al-Rub, and H.A. Younes, Finite Element Predictions of Effective Multifunctional Properties of Interpenetrating Phase Composites with Novel Triply Periodic Solid Shell Architectured Reinforcements, Int. J. Mech. Sci., 2015, 92, p 80–89

    Article  Google Scholar 

  28. A.S. Dalaq, D.W. Abueidda, and R.K. Abu Al-Rub, Mechanical Properties of 3D Printed Interpenetrating Phase Composites with Novel Architectured 3D Solid-Sheet Reinforcements, Compos. A Appl. Sci. Manuf., 2016, 84, p 266–280

    Article  Google Scholar 

  29. O. Al-Ketan, M. Adel Assad, and R.K. Abu Al-Rub, Mechanical Properties of Periodic Interpenetrating Phase Composites with Novel Architected Microstructures, Compos. Struct., 2017, 176, p 9–19

    Article  Google Scholar 

  30. O. Al-Ketan, R.K. Abu Al-Rub, and R. Rowshan, Mechanical Properties of a New Type of Architected Interpenetrating Phase Composite Materials, Adv. Mater. Technol., 2017, 2(2), p 1600235

    Article  Google Scholar 

  31. O. Al-Ketan, A. Soliman, A.M. AlQubaisi, and R.K. Abu Al-Rub, Nature-Inspired Lightweight Cellular Co-Continuous Composites with Architected Periodic Gyroidal Structures, Adv. Eng. Mater., 2018, 20(2), p 1700549

    Article  Google Scholar 

  32. K.A. Khan and R.K. Abu Al-Rub, Time Dependent Response of Architectured Neovius Foams, Int. J. Mech. Sci., 2017, 126, p 106–119

    Article  Google Scholar 

  33. K.A. Khan and R.K. Abu Al-Rub, Modeling Time and Frequency Domain Viscoelastic Behavior of Architectured Foams, J. Eng. Mech., 2018, 144(6), p 04018029

    Article  Google Scholar 

  34. D.-W. Lee, K.A. Khan, and R.K. Abu Al-Rub, Stiffness and Yield Strength of Architectured Foams Based on the Schwarz Primitive Triply Periodic Minimal Surface, Int. J. Plast., 2017, 95, p 1–20

    Article  Google Scholar 

  35. F. Bobbert, K. Lietaert, A. Eftekhari, B. Pouran, S. Ahmadi, H. Weinans, and A. Zadpoor, Additively Manufactured Metallic Porous Biomaterials Based on Minimal Surfaces: A Unique Combination of Topological, Mechanical, and Mass Transport Properties, Acta Biomater., 2017, 53, p 572–584

    Article  Google Scholar 

  36. I. Maskery, N.T. Aboulkhair, A.O. Aremu, C.J. Tuck, and I.A. Ashcroft, Compressive Failure Modes and Energy Absorption in Additively Manufactured Double Gyroid Lattices, Addit. Manuf., 2017, 16, p 24–29

    Article  Google Scholar 

  37. L. Zhang, S. Feih, S. Daynes, S. Chang, M.Y. Wang, J. Wei, and W.F. Lu, Energy Absorption Characteristics of Metallic Triply Periodic Minimal Surface Sheet Structures Under Compressive Loading, Addit. Manuf., 2018, 23, p 505–515

    Article  Google Scholar 

  38. A. Ataee, Y. Li, D. Fraser, G. Song, and C. Wen, Anisotropic Ti-6Al-4 V Gyroid Scaffolds Manufactured by Electron Beam Melting (EBM) for Bone Implant Applications, Mater. Des., 2018, 137, p 345–354

    Article  Google Scholar 

  39. C. Han, Y. Li, Q. Wang, S. Wen, Q. Wei, C. Yan, L. Hao, J. Liu, and Y. Shi, Continuous Functionally Graded Porous Titanium Scaffolds Manufactured by Selective Laser Melting for Bone Implants, J. Mech. Behav. Biomed. Mater., 2018, 80, p 119–127

    Article  Google Scholar 

  40. C. Yan, L. Hao, A. Hussein, S.L. Bubb, P. Young, and D. Raymont, Evaluation of Light-Weight AlSi10 Mg Periodic Cellular Lattice Structures Fabricated via Direct Metal Laser Sintering, J. Mater. Process. Technol., 2014, 214(4), p 856–864

    Article  Google Scholar 

  41. C. Yan, L. Hao, A. Hussein, and D. Raymont, Evaluations of Cellular Lattice Structures Manufactured Using Selective Laser Melting, Int. J. Mach. Tools Manuf, 2012, 62, p 32–38

    Article  Google Scholar 

  42. C. Yan, L. Hao, A. Hussein, P. Young, and D. Raymont, Advanced Lightweight 316L Stainless Steel Cellular Lattice Structures Fabricated via Selective Laser Melting, Mater. Des., 2014, 55, p 533–541

    Article  Google Scholar 

  43. A. Yánez, A. Cuadrado, O. Martel, H. Afonso, and D. Monopoli, Gyroid Porous Titanium Structures: A Versatile Solution to be Used as Scaffolds in Bone Defect Reconstruction, Mater. Des., 2018, 140, p 21–29

    Article  Google Scholar 

  44. K. Michielsen and J. Kole, Photonic Band Gaps in Materials with Triply Periodic Surfaces and Related Tubular Structures, Phys. Rev. B, 2003, 68(11), p 115107

    Article  Google Scholar 

  45. S. Van Bael, G. Kerckhofs, M. Moesen, G. Pyka, J. Schrooten, and J.-P. Kruth, Micro-CT-Based Improvement of Geometrical and Mechanical Controllability of Selective Laser Melted Ti-6Al-4 V Porous Structures, Mater. Sci. Eng. A, 2011, 528(24), p 7423–7431

    Article  Google Scholar 

  46. M.E. Ashby, A.G. Evans, N.A. Fleck, L.J. Gibson, J.W. Hutchinson, H.N.G. Wadley, Chapter 3: Characterization Methods 2000, Metal Foams, p 24–39

  47. I. Maskery, N.T. Aboulkhair, A.O. Aremu, C.J. Tuck, I.A. Ashcroft, R.D. Wildman, and R.J.M. Hague, A Mechanical Property Evaluation of Graded Density Al-Si10-Mg Lattice Structures Manufactured by Selective Laser Melting, Mater. Sci. Eng. A, 2016, 670, p 264–274

    Article  Google Scholar 

Download references

Acknowledgment

Experimental parts were printed using Core Technology Platform resources at NYU Abu Dhabi. We thank Khulood Alawadi and Jumaanah Elhashemi from NYU Abu Dhabi for assistance with 3D printing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rashid Abu Al-Rub.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abou-Ali, A.M., Al-Ketan, O., Rowshan, R. et al. Mechanical Response of 3D Printed Bending-Dominated Ligament-Based Triply Periodic Cellular Polymeric Solids. J. of Materi Eng and Perform 28, 2316–2326 (2019). https://doi.org/10.1007/s11665-019-03982-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-019-03982-8

Keywords

Navigation