Skip to main content

Advertisement

Log in

Research on the Corrosion Behavior of X70 Pipeline Steel Under Coupling Effect of AC + DC and Stress

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

The coupling effect of stray AC (alternating current) + DC (direct current) and tensile stress-induced X70 pipeline corrosion is complicated with its mechanism uncovered. In this work, the corrosion behavior of X70 pipeline steel under three different corrosion (including an individual AC corrosion, mixed AC + 150 MPa tensile stress corrosion, coupling effect of AC + a 30 A/m2 DC interference and 150 MPa tensile stress corrosion) conditions in Dagang soil simulated solution was investigated by COMSOL Multiphysics software simulation, electrochemical tests, scanning electron microscope and other techniques. The results indicated that with the increase in AC density, the open-circuit potential of the X70 steel samples was negatively shifted and corrosion rate increased in three different corrosion conditions. The corrosion rates of X70 steel samples under individual AC interference were almost unchanged when 150.9 MPa tensile stress was applied. When applying 30 A/m2 DC interference, the corrosion rate of X70 steel increases significantly. Therefore, the factors affecting corrosion performance of X70 pipeline steel were DC > AC > stress. Under individual AC interference, uniform corrosion occurred on the X70 steel at an AC current density of less than 30 A/m2, while the pitting corrosion occurred at an AC current density of greater than 100 A/m2. The application of tensile stress and DC had a certain inhibitory effect on pitting corrosion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. S.R. Allahkaram, M. Isakhani-Zakaria, M. Derakhshani et al., Investigation on Corrosion Rate and a Novel Corrosion Criterion for Gas Pipelines Affected by Dynamic Stray Current, J. Nat. Gas Sci. Eng., 2015, 26, p 453–460

    Article  Google Scholar 

  2. A.O.S. Solgaard, M. Carsana, M.R. Geiker et al., Experimental Observations of Stray Current Effects on Steel Fibres Embedded in Mortar, Corros. Sci., 2013, 74, p 1–12

    Article  CAS  Google Scholar 

  3. Q. Zhu, A. Cao, Z. Wang et al., Stray Current Corrosion in Buried Pipeline, Anti-Corros. Methods Mater., 2013, 58(5), p 234–237

    Article  Google Scholar 

  4. L. Bertolini, M. Carsana, and P. Pedeferri, Corrosion Behaviour of Steel in Concrete in the Presence of Stray Current, Corros. Sci., 2007, 49(3), p 1056–1068

    Article  CAS  Google Scholar 

  5. T.J. Barlo and A.D. Zdunek, Stray Current Corrosion in Electrified Rail System-Final Report. (Infrastructure Technology Institute, Evanston Illinois, 1995), pp. 1–47.

  6. Z.G. Chen, C.K. Qin, J.X. Tang et al., Experiment Research of Dynamic Stray Current Interference on Buried Gas Pipeline from Urban Rail Transit, J. Nat. Gas Sci. Eng., 2013, 15(6), p 76–81

    Article  Google Scholar 

  7. H.R. Hanson, AC Corrosion on a Pipeline Located in an HVAC Utility Corridor, in Corrosion (2004).

  8. M. Ouadah, O. Touhami, R. Ibtiouen et al., Corrosive Effects of the Electromagnetic Induction Caused by the High Voltage Power Lines on Buried X70 Steel Pipelines, Int. J. Electr. Power Energy Syst., 2017, 91, p 34–41

    Article  Google Scholar 

  9. X.H. Wang, J.Y. Liu, H.E. Ren-Yang et al., Detection Method of Stray Current to Urban Buried Gas Pipelines, in Pipeline Technique & Equipment (2010).

  10. S.Y. Xu, W. Li, and Y.Q. Wang, Effects of Vehicle Running Mode on Rail Potential and Stray Current in DC Mass Transit Systems, IEEE Trans. Veh. Technol., 2013, 62(8), p 3569–3580

    Article  Google Scholar 

  11. Z.X. Tang, Z.J. Wen, C.S. Li et al., Corrosion Behavior of Carbon Steel in Interference of Stray Current and Cathodic Protection, Surf. Technol., 2015, 44(12), p 12–18

    Google Scholar 

  12. M. Ouadah, O. Touhami, R. Ibtiouen et al., Method for Diagnosis of the Effect of AC on the X70 Pipeline Due to an Inductive Coupling Caused by HVPL, IET Sci. Meas. Technol., 2017, 11(6), p 766–772

    Article  Google Scholar 

  13. Y. Li, Effects of Stray AC Interference on Corrosion Behavior of X70 Pipeline Steel in a Simulated Marine Soil SolutionJ], Int. J. Electrochem. Sci., 2017, 12(3), p 1829–1845

    Article  CAS  Google Scholar 

  14. Z. Jiang, Y. Du, M. Lu et al., New Findings on the Factors Accelerating AC Corrosion of Buried Pipeline, Corros. Sci., 2014, 81(81), p 1–10

    Article  CAS  Google Scholar 

  15. B. Mccollum and G.H. Ahlborn, The Influence of Frequency of Alternating or Infrequently Reversed Current on Electrolytic Corrosion, Proc. Am. Inst. Electr. Eng., 2013, 35(3), p 371–397

    Article  Google Scholar 

  16. S. Goidanich, L. Lazzari, and M. Ormellese, AC Corrosion. Part 2: Parameters Influencing Corrosion Rate, Corros. Sci., 2010, 52(3), p 916–922

    Article  CAS  Google Scholar 

  17. X. Wang and X. Wang, Effects of Stray AC on Delamination of Epoxy Coatings with Defects in 3.5% NaCl Solution, Int. J. Electrochem. Sci., 2017, 12(7), p 6520–6534

    Article  CAS  Google Scholar 

  18. X. Wang, X. Tang, L. Wang et al., Corrosion Behavior of X80 Pipeline Steel under Coupling Effect of Stress and Stray Current, Int. J. Electrochem. Sci., 2014, 9(8), p 4574–4588

    Google Scholar 

  19. Y. Chen, Cathodic Protection Parameters of X65 and X80 Pipeline Steels in Dagang Simulated Soil Solution, Surf. Technol., 2018, 47(6), p 218–223

    Google Scholar 

  20. Z. Liu, Z. Cui, X. Li et al., Mechanistic Aspect of Stress Corrosion Cracking of X80 Pipeline Steel Under Non-Stable Cathodic Polarization, Electrochem. Commun., 2014, 48, p 127–129

    Article  Google Scholar 

  21. N. Winzer, A. Atrens, G. Song et al., A Critical Review of the Stress Corrosion Cracking (SCC) of Magnesium Alloys, Adv. Eng. Mater., 2010, 7(8), p 659–693

    Article  Google Scholar 

  22. Z.Y. Liu, X.G. Li, and Y.F. Cheng, Mechanistic Aspect of Near-Neutral pH Stress Corrosion Cracking of Pipelines Under Cathodic Polarization, Corros. Sci., 2012, 55(2), p 54–60

    Article  CAS  Google Scholar 

  23. G.V. Boven, R. Rogge, and W. Chen, Residual Stress and Stress Corrosion Cracking of High Pressure Hydrocarbon Transmission Pipelines, in International Pipeline Conference (2007), pp. 725–742.

  24. Y. Wei, H. Feng, H.U. Qian et al., Influences of Applied Tensile Stress on the Pitting Electrochemical Behavior of X80 Pipeline Steel, J. Chin. Soc. Corros. Protect., 2013, 33(4), p 277–282

    Google Scholar 

  25. Z.Y. Liu, X.G. Li, and Y.F. Cheng, Electrochemical State Conversion Model for Occurrence of Pitting Corrosion on a Cathodically Polarized Carbon Steel in a Near-Neutral pH Solution, Electrochim. Acta, 2011, 56(11), p 4167–4175

    Article  CAS  Google Scholar 

  26. M. Büchler, Alternating Current Corrosion of Cathodically Protected Pipelines: Discussion of the Involved Processes and Their Consequences on the Critical Interference Values, Mater. Corros., 2015, 63(12), p 1181–1187

    Article  Google Scholar 

  27. M. Büchler, T. Watari, and W.H. Smyrl, Investigation of the Initiation of Localized Corrosion on Aluminum Alloys by Using Fluorescence Microscopy, Corros. Sci., 2000, 42(9), p 1661–1668

    Article  Google Scholar 

  28. L.Y. Xu and Y.F. Cheng, An Experimental Investigation of Corrosion of X100 Pipeline Steel Under Uniaxial Elastic Stress in a Near-Neutral pH Solution, Corros. Sci., 2012, 59(3), p 103–109

    Article  CAS  Google Scholar 

  29. L. Yang, N. Hort, R. Willumeit et al., Effects of Corrosion Environment and Proteins on Magnesium Corrosion, Br. Corros. J., 2014, 47(5), p 335–339

    Google Scholar 

  30. X.U. Chun-chun and L. Chi, Electrochemical Behavior of X70 Pipeline Steel in Carbonate-Bicarbonate Solution, Corros. Sci. Protect. Technol., 2004, 16(5), p 268–271

    Google Scholar 

  31. F. Mansfeld, Tafel Slopes and Corrosion Rates Obtained in the pre-Tafel Region of Polarization Curves, Corros. Sci., 2005, 47(12), p 3178–3186

    Article  CAS  Google Scholar 

  32. U. Bertocci, AC Induced Corrosion. The Effect of an Alternating Voltage on Electrodes Under Charge-Transfer Control, Corrosion, 1979, 35:5(5), p 1281–1287

    Google Scholar 

  33. L. Liang, Y. He, H. Song et al., Effect of Hydration Pretreatment on Tunnel Etching Behaviour of Aluminium Foil, Corros. Sci., 2013, 70(3), p 180–187

    Article  CAS  Google Scholar 

  34. Y. Guo, T. Meng, D. Wang et al., Experimental Research on the Corrosion of X Series Pipeline Steels Under Alternating Current Interference, Eng. Fail. Anal., 2017, 78, p 87–98

    Article  CAS  Google Scholar 

  35. S.B. Lalvani and X.A. Lin, A Theoretical Approach for Predicting AC-Induced Corrosion, Corros. Sci., 1994, 36(6), p 1039–1046

    Article  CAS  Google Scholar 

  36. X. Wang, X. Tang, L. Wang et al., Corrosion Behavior of X80 Pipeline Steel under Coupling Effect of Stress and Stray Current, Int. J. Electrochem. Sci., 2014, 9(8), p 4574–4588

    Google Scholar 

  37. C. Wen, J. Li, S. Wang et al., Experimental Study on Stray Current Corrosion of Coated Pipeline Steel, J. Nat. Gas Sci. Eng., 2015, 27, p 1555–1561

    Article  CAS  Google Scholar 

  38. M. Büchler and H.-G. Schöneich, Investigation of Alternating Current Corrosion of Cathodically Protected Pipelines: Development of a Detection Method, Mitigation Measures, and a Model for the Mechanism, Corrosion, 2012, 65(9), p 578–586

    Article  Google Scholar 

  39. Z. Tang, S. Hong, W. Xiao et al., Characteristics of Iron Corrosion Scales Established Under Blending of Ground, Surface, Saline Waters and Their Impacts on Iron Release in the Pipe Distribution System, Corros. Sci., 2006, 48(2), p 322–342

    Article  CAS  Google Scholar 

  40. Y.B. Guo, C. Liu, D.G. Wang et al., Effects of Alternating Current Interference on Corrosion of X60 Pipeline Steel, Petrol. Sci., 2015, 12(2), p 316–324

    Article  CAS  Google Scholar 

  41. Y. Wei, H. Feng, H.U. Qian et al., Influences of Applied Tensile Stress on the Pitting Electrochemical Behavior of X80 Pipeline Steel, J. Chin. Soc. Corros. Protect., 2013, 33(4), p 277–282

    Google Scholar 

Download references

Acknowledgments

This study was supported by National Natural Science Foundation of China (No. 51471011) and “Rixin Scientist” of Beijing University of Technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yingchun Chen.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, X., Wang, Z., Chen, Y. et al. Research on the Corrosion Behavior of X70 Pipeline Steel Under Coupling Effect of AC + DC and Stress. J. of Materi Eng and Perform 28, 1958–1968 (2019). https://doi.org/10.1007/s11665-019-03959-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-019-03959-7

Keywords

Navigation