Skip to main content
Log in

Texture Evolution and Its Effect on Fatigue Crack Propagation in Two 2000 Series Alloys

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

The texture evolution and fatigue crack propagation (FCP) of 2000 series alloys were investigated, respectively, by using scanning electron microscopy and x-ray diffraction. Results showed that the intensity change in different textures (such as Goss, Copper, S and Brass) abides by a linear evolution law, and a new model for texture evolution is proposed to predict the texture intensity during different heat treatments. With increasing annealing temperature, the FCP rate increased, but the damage tolerance decreased. The intensity of P texture was the key to affecting FCP rate and damage tolerance of the alloys. A new model based on the average grain diameter and P texture volume fraction was proposed to predict FCP rate and damage tolerance, and the predicted FCP rates agree very well with the experimental FCP rates of the alloys after different T83 treatments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. B.I. Rodgers and P.B. Prangnell, Quantification of the Influence of Increased Pre-stretching on Microstructure-strength Relationships in the Al-Cu-Li Alloy AA2195, Acta Mater., 2016, 108, p 55–67

    Article  Google Scholar 

  2. Y.J. Chen, J. Zhou, C.C. Liu, and F.S. Wang, Effect of Pre-deformation on the Pre-Corrosion Multiaxial Fatigue Behaviors of 2024-T4 Aluminum Alloy, Int. J. Fatigue, 2018, 108, p 35–46

    Article  Google Scholar 

  3. S.F. Zhang, W.D. Zeng, W.H. Yang, C.L. Shi, and H.J. Wang, Ageing Response of a Al-Cu-Li 2198 Alloy, Mater. Des., 2014, 63, p 368–374

    Article  Google Scholar 

  4. M.R. Joyce, M.J. Starink, and I. Sinclair, Assessment of Mixed Mode Loading on Macroscopic Fatigue Crack Paths in Thick Section Al-Cu-Li Alloy Plate, Mater. Des., 2016, 93, p 379–387

    Article  Google Scholar 

  5. N. Nayan, S.V.S.N. Murty, S. Chhangani, A. Prakash, M.J.N.V. Prasad, and I. Samajdar, Effect of Temperature and Strain Rate on Hot Deformation Behavior and Microstructure of Al-Cu-Li Alloy, J. Alloy. Compd., 2017, 723, p 548–558

    Article  Google Scholar 

  6. P.S. De, R.S. Mishra, and J.A. Baumann, Characterization of High Cycle Fatigue Behavior of a New Generation Aluminum Lithium Alloy, Acta Mater., 2011, 59, p 5946–5960

    Article  Google Scholar 

  7. F.D. Li, Z.Y. Liu, W.T. Wu, P. Xia, P.Y. Ying, Y.R. Zhou, W.J. Liu, L.Q. Lu, and A. Wang, Enhanced Fatigue Crack Propagation Resistance of Al-Cu-Mg Alloy by Intensifying Goss Texture and Refining Goss Grains, Mater. Sci. Eng. A, 2017, 679, p 204–214

    Article  Google Scholar 

  8. F.D. Li, Z.Y. Liu, W.T. Wu, Q. Zhao, Y.R. Zhou, S. Bai, X.H. Wang, and G.H. Fan, Slip Band Formation in Plastic Deformation Zone at Crack Tip in Fatigue Stage II, of 2xxx Aluminum Alloys, Int. J. Fatigue, 2016, 91, p 68–78

    Article  Google Scholar 

  9. F.D. Li, Z.Y. Liu, W.T. Wu, P. Xia, P.Y. Ying, Q. Zhao, J.L. Li, S. Bai, and C.W. Ye, On the Role of Texture in Governing Fatigue Crack Propagation Behavior of 2524 Aluminum Alloy, Mater. Sci. Eng. A, 2016, 669, p 367–378

    Article  Google Scholar 

  10. Z.Y. Liu, F.D. Li, P. Xia, S. Bai, Y.X. Gu, D.E. Yu, and S.M. Zeng, Mechanisms for Goss-grains Induced Crack Deflection and Enhanced Fatigue Crack Propagation Resistance in Fatigue Stage II, of An A2524 Alloy, Mater. Sci. Eng. A, 2015, 625, p 271–277

    Article  Google Scholar 

  11. M. Liu, Z.Y. Liu, S. Bai, P. Xia, P.Y. Ying, and A. Wang, Analysis on the Dissolution Behavior of Various Size Cu-Mg Co-Clusters Near a Fatigue Crack Tip of Underaged Al-Cu-Mg Alloy During Cyclic Loading, J. Alloy. Compd., 2017, 699, p 119–125

    Article  Google Scholar 

  12. M. Liu, Z.Y. Liu, S. Bai, P. Xia, P.Y. Ying, and S.M. Zeng, Solute Cluster Size Effect on the Fatigue Crack Propagation Resistance of an Underaged Al-Cu-Mg Alloy, Int. J. Fatigue, 2016, 84, p 104–112

    Article  Google Scholar 

  13. D.J. Morrison and J.C. Moosbrugger, Effects of Grain Size on Cyclic Plasticity and Fatigue Crack Initiation in Nickel, Int. J. Fatigue, 1997, 19, p 51–59

    Article  Google Scholar 

  14. L. Venning, S.C. Hogg, I. Sinclair, and P.A.S. Reed, Fatigue Crack Growth and Closure in Fine-grained Aluminium Alloys, Mater. Sci. Eng. A, 2006, 428, p 247–255

    Article  Google Scholar 

  15. Y. Estrin and A. Vinogradov, Fatigue Behaviour of Light Alloys with Ultrafine Grain Structure Produced by Severe Plastic Deformation: An Overview, Int. J. Fatigue, 2010, 32, p 898–907

    Article  Google Scholar 

  16. X. Chen, Z.Y. Liu, M. Lin, A.L. Ning, and S.M. Zeng, Enhanced Fatigue Crack Propagation Resistance in An Al-Zn-Mg-Cu Alloy by Retrogression and Reaging Treatment, J. Mater. Eng. Perform., 2012, 21, p 2345–2353

    Article  Google Scholar 

  17. C. Watanabe, R. Monzen, and K. Tazaki, Effects of Al 3 Sc Particle Size and Precipitate-Free Zones on Fatigue Behavior and Dislocation Structure of an Aged Al-Mg-Sc Alloy, Int. J. Fatigue, 2008, 30, p 635–641

    Article  Google Scholar 

  18. T.T. Huang, Q. Zhao, Z.Y. Liu, and S. Bai, Enhanced Damage Tolerance Through Reconstructing Residual Stress and Cu-Mg Co-Clusters by Pre-rolling in An Al-Cu-Mg Alloy, Mater. Sci. Eng. A, 2017, 700, p 241–249

    Article  Google Scholar 

  19. W.T. Wu, Z.Y. Liu, Y.C. Hu, F.D. Li, S. Bai, P. Xia, A. Wang, and C.W. Ye, Goss Texture Intensity Effect on Fatigue Crack Propagation Resistance in an Al-Cu-Mg Alloy, J. Alloy. Compd., 2018, 730, p 318–326

    Article  Google Scholar 

  20. C.L. Dong, H.C. Yu, Z.H. Jiao, F.T. Kong, and Y.Y. Chen, Low Cycle Fatigue, Creep and Creep-fatigue Interaction Behavior of a TiAl Alloy at High Temperatures, Scr. Mater., 2018, 144, p 60–63

    Article  Google Scholar 

  21. Q. Zhao, Z.Y. Liu, T.T. Huang, P. Xia, and F.D. Li, Enhanced Fracture Toughness in an Annealed Al-Cu-Mg Alloy by Increasing Goss/Brass Texture Ratio, Mater. Charact., 2016, 119, p 47–54

    Article  Google Scholar 

  22. Q. Zhao, Z.Y. Liu, S.S. Li, T.T. Huang, P. Xia, and L.Q. Lu, Evolution of the Brass Texture in An Al-Cu-Mg Alloy During Hot Rolling, J. Alloy. Compd., 2017, 691, p 786–799

    Article  Google Scholar 

  23. F. Liu, Z.Y. Liu, M. Liu, Y.C. Hu, Y. Chen, and S. Bai, Analysis of Empirical Relation between Microstructure, Texture Evolution and Fatigue Properties of An Al-Cu-Li Alloy during Different Pre-deformation Processes, Mater. Sci. Eng. A, 2018, 726, p 309–319

    Article  Google Scholar 

  24. J. Hjelen, R. Ørsund, and E. Nes, On the Origin of Recrystallization Textures in Aluminum, Acta Metall., 1991, 39, p 1377–1404

    Article  Google Scholar 

  25. O. Engler, J. Hirsch, and K. Lücke, Texture Development in Al-1.8 wt.% Cu Depending on the Precipitation State—II. Recrystallization Textures, Acta Metall., 1995, 43, p 121–138

    Google Scholar 

  26. O. Daaland, P.E. Dronen, H.E. Vatne, S.E. Naess, and E. Nes, On the Growth Rate of Cube-, Rotated Cube- and Rotated Goss-Grains in Commercial Aluminium Alloys, Mater. Sci. Forum, 1993, 113, p 115–120

    Article  Google Scholar 

  27. R. Becker and J.F. Butler, Analysis of an Aluminum Single Crystal with Unstable Initial Orientation (001) [110] in Channel Die Compression, Metall. Trans. A, 1991, 22, p 45–51

    Article  Google Scholar 

  28. T. Leffers and R.K. Ray, The Brass-type Texture and Its Deviation from the Copper-type Texture, Prog. Mater Sci., 2009, 54, p 351–396

    Article  Google Scholar 

  29. I.L. Dillamore and H. Katoh, The Mechanisms of Recrystallization in Cubic Metals with Particular Reference to Their Orientation-dependence, Met. Sci., 1974, 8, p 73–83

    Article  Google Scholar 

  30. F.J. Humphreys and M. Hatherly, Recrystallization and Related Annealing Phenomena, Pergamon Press, Oxford, UK, 2004

    Google Scholar 

  31. F.J. Humphreys, The Nucleation of Recrystallization at Second Phase Particles in Deformed Aluminium, Acta Metall., 1977, 25, p 1323–1344

    Article  Google Scholar 

  32. J. Hirsch, Texture and Anisotropy in Industrial Applications of Aluminum Alloys, Arch. Metall. Mater., 2005, 50, p 21–34

    Google Scholar 

  33. E.O. Hall, The Deformation and Ageing of Mild Steel: II, Characteristics of the Lüders Deformation, Proc. Phys. Soc. Lond. B, 1951, 64, p 742–747

    Article  Google Scholar 

  34. N.J. Petch, The Cleavage Strength of Polycrystals, J. Iron Steel Inst., 1953, 174, p 25–28

    Google Scholar 

  35. P. Paris and F. Erdogan, A Critical Analysis of Crack Propagation Laws, Trans. ASME Ser. D, 1963, 85, p 528–533

    Article  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the financial support from the National Key Research and Development Program of China (2016YFB0300900), the National Key Fundamental Research Project of China (2012CB619506-3) and Natural Science Foundation of China (51171209).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhiyi Liu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, F., Liu, Z., Liu, M. et al. Texture Evolution and Its Effect on Fatigue Crack Propagation in Two 2000 Series Alloys. J. of Materi Eng and Perform 28, 1324–1336 (2019). https://doi.org/10.1007/s11665-019-03894-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-019-03894-7

Keywords

Navigation