Skip to main content
Log in

Evaluation of the Role of Metallic Matrix on Environmentally Assisted Embrittlement of Austempered Ductile Iron (ADI) Using High Si Steel

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

The objective of this work stems from the environmentally assisted embrittlement suffered by austempered ductile iron (ADI) when its surface is submerged in water. This phenomenon leads to a drop in elongation and ultimate tensile strength of about 75% and 10%, respectively, while the 0.2% offset strain stress remains unaffected. Heat-treating a high Si steel, an ausferritic matrix similar to that present in the ADI under study is obtained, yielding giving a very good combination of tensile strength and elongation. In this manner, it was possible to examine the influence of the metallic matrix such as that present in ADI, though without nodules and cell boundaries, also called last to freeze zones (LTF). Tensile test evaluations on ADI and steel samples under dry and wet conditions were carried out. Additionally, a very specific test, introducing surface cracks, was conducted with the purpose of expanding the current knowledge on this particular kind of fracture. Earlier investigations on ADI have suggested that the process of embrittlement starts in a surface crack generated at the early stages of plastic deformation in LTF zones, which results from the solidification process, where pores, inclusions and unreacted austenite are present. In this manner, water penetrates and weakens the material strength, making the crack grow very fast and leading to an instantaneous samples failure. The main results obtained in this work include the confirmation of the deleterious effect of the LTF zones in the embrittlement process and the fracture surface analysis showing characteristic features of this kind of failure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. R.A. Martínez, A. Cassanelli, H. Mejías, J.C. González, B.M. Patchett, and L.A. De Vedia, Development of an AWS E90T1-B3 Type Flux Cored Electrode for Welding 2.25% Cr—1 Mo Steel, Trends Weld. Res., 1989, 1, p 575

    Google Scholar 

  2. G.P. Tiwari, A. Bose, J.K. Chakravartty, S.L. Wadekar, M.K. Totlani, R.N. Arya, and Fotedar, A Study of Internal Hydrogen Embrittlement of Steels, Mater. Sci. Eng. A, 2000, A286, p 269

    Article  CAS  Google Scholar 

  3. R.A. Siddiqui and H.A. Abdullah, Hydrogen Embrittlement in 6063 Aluminum Alloy, J. Mater. Process. Technol., 2005, 170, p 430

    Article  CAS  Google Scholar 

  4. K. Ina and H. Koizumi, Penetration of Liquid metals into Solid Metals and Liquid Metal Embrittlement, Mater. Sci. Eng. A, 2004, 387, p 390

    Article  Google Scholar 

  5. R.E. Clegg and D.R.H. Jones, Liquid Metal Embrittlement of Tensile Specimens of En19 Steel by Tin, Eng. Fail. Anal., 2003, 10, p 119

    Article  CAS  Google Scholar 

  6. T. Auger and G. Lorang, Liquid Metal Embrittlement Susceptibility of T91 Steel by Lead–Bismuth, Scr. Mater., 2005, 52, p 1323

    Article  CAS  Google Scholar 

  7. E. Izumoto and R. Nishimura, Failure analysis of a Weld-Decayed Austenitic Stainless Steel, Corros. Sci., 2011, 53, p 886

    Article  CAS  Google Scholar 

  8. X. Gong, P. Marmy, L. Qin, B. Verlinden, M. Wevers, and M. Seefeldt, Effect of Liquid Metal Embrittlement on Low Cycle Fatigue Properties and Fatigue Crack Propagation Behavior of a Modified 9Cr–1Mo ferritic–Martensitic Steel in an Oxygen-Controlled Lead–Bismuth Eutectic Environment at 350°C, Mater. Sci. Eng. A, 2014, 618, p 406

    Article  CAS  Google Scholar 

  9. S. Komatsu, C.Q. Zhou, S. Shibutani, and Y. Tanaka, Embrittlement Characteristics of Fracture Toughness in Ductile Iron by Contact with Water, Int. J. Cast Metals Res., 1999, 11, p 539

    Article  CAS  Google Scholar 

  10. R.A. Martínez, R. Boeri, and J.A. Sikora, Embrittlement of Austempered Ductile Iron Caused by Contact with Water and Other liquids, Int. J. Cast Met. Res., 2000, 13, p 9

    Article  Google Scholar 

  11. B. Laine, S.N. Simison , R.A. Martínez, R. Boeri, Anales del congreso CONAMET/SAM—SIMPOSIO MATERIA., Santiago de Chile, Chile, 2002, (1), p. 121

  12. G. Rivera, R. Boeri, and J. Sikora, Revealing the Solidification Structure of Nodular Iron, Int. J. Cast Met. Res., 1995, 8(1), p 1–5

    Article  CAS  Google Scholar 

  13. H.K.D.H. Bhadeshia, Bainite in Steels, 2nd ed., IOM Communications Ltd, London, 2001

    Google Scholar 

  14. J.L. Páez, F. Fuentes, and A. Battagliese, Tratamiento isotérmico de los aceros aleados al silicio Tipo SAE 92XX, Rev. Metal. Madrid., 1996, 32, p 3

    Article  Google Scholar 

  15. N. Tsuji, M. Ayada, T. Takashima, and Y. Saito, Ausformed Bainite in SUP7 Spring Steel, Tetsutihagane, 1999, 85, p 419

    CAS  Google Scholar 

  16. S.K. Putatunda, A.V. Singar, R. Tackett, and G. Lawes, Development of a High Strength High Toughness Ausferritic Steel, Mater. Sci. Eng. A, 2009, 513–514, p 329–339

    Article  Google Scholar 

  17. R.A. Martínez, S. Simison, R. Boeri, Crack Initiation in Austempered Ductile iron Strained in Contact with Different Liquids, Science and Processing of Cast Iron, 2006, vol 1. p 145–150

  18. L. Masud, R.A. Martínez, S. Simison, and R. Boeri, Embrittlement of Austempered Ductile Iron on Contact with Water—Testing Under Applied Potential, J. Mater. Sci., 2003, 38, p 2971

    Article  CAS  Google Scholar 

  19. L. Caballero, M. Elices, and R.N. Parkins, Environment-Sensitive Fracture of Austempered Ductile Iron, Corrosion, 2005, 61, p 51

    Article  CAS  Google Scholar 

  20. D. Rajnovic, S. Balos, L. Sidjanin, O.E. Cekic, and J.G. Novakovic, Tensile Properties of ADI, Material in Water and Gaseous Environments, Mater. Charact., 2015, 101, p 26

    Article  CAS  Google Scholar 

  21. R.A. Martinez, Fracture Surfaces and the Associated Failure Mechanisms in Ductile Iron with Different Matrices and Load Bearing, Eng. Fract. Mech., 2010, 77, p 2749

    Article  Google Scholar 

  22. G.L. Greno, J.L. Otegui, and R. Boeri, Mechanism of Fatigue Crack Growth in Austempered Ductile Iron, Int. J Fatigue, 1999, 21, p 35

    Article  CAS  Google Scholar 

  23. S. Lynch, Ductile and Brittle Crack Growth: Fractography, Mechanisms and Criteria, Mater. Forum, 1988, 11, p 268

    CAS  Google Scholar 

Download references

Acknowledgments

This work could be the platform for the study of this and other steels, when the load bearing is, for example, of cyclic nature in order to evaluate nucleation and cracks propagation in the presence of water. In addition, the study could be extended to other metallic alloys.

Funding

This study was funded by the National Scientific and Technical Research Council (CONICET)—Grant PIP 0047. The author declares that there is no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ricardo A. Martinez.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Martinez, R.A. Evaluation of the Role of Metallic Matrix on Environmentally Assisted Embrittlement of Austempered Ductile Iron (ADI) Using High Si Steel. J. of Materi Eng and Perform 27, 6597–6605 (2018). https://doi.org/10.1007/s11665-018-3725-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-018-3725-8

Keywords

Navigation