Skip to main content
Log in

Suspended InAs Nanowire-Based Devices for Thermal Conductivity Measurement Using the 3ω Method

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

We demonstrated device architectures implementing suspended InAs nanowires for thermal conductivity measurements. To this aim, we exploited a fabrication protocol involving the use of a sacrificial layer. The relatively large aspect ratio of our nanostructures combined with their low electrical resistance allows to exploit the four-probe 3ω technique to measure the thermal conductivity, inducing electrical self-heating in the nanowire at frequency ω and measuring the voltage drop across the nanostructure at frequency 3ω. In our systems, field effect modulation of the transport properties can be achieved exploiting fabricated side-gate electrodes in combination with the SiO2/Si ++ substrate acting as a back gate. Our device architectures can open new routes to the all-electrical investigation of thermal parameters in III-V semiconductor nanowires, with a potential impact on thermoelectric applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. G.J. Snyder and E.S. Toberer, Complex Thermoelectric Materials, Nat. Mater., 2008, 7, p 105

    CAS  Google Scholar 

  2. J.P. Heremans, V. Jovovic, E.S. Toberer, A. Saramat, K. Kurosaki, A. Charoenphakdee, S. Yamanaka, and G.J. Snyder, Enhancement of Thermoelectric Efficiency in PbTe by Distortion of the Electronic Density of States, Science, 2008, 321, p 554

    CAS  Google Scholar 

  3. K. Biswas, J. He, I.D. Blum, C.I. Wu, T.P. Hogan, D.N. Seidman, V.P. Dravid, and M.G. Kanatzidis, High-Performance Bulk Thermoelectrics with All-Scale Hierarchical Architectures, Nature, 2012, 489, p 414

    CAS  Google Scholar 

  4. L.D. Zhao, S.H. Lo, Y. Zhang, H. Sun, G. Tan, C. Uher, C. Wolverton, V.P. Dravid, and M.G. Kanatzidis, Ultralow Thermal Conductivity and High Thermoelectric Figure of Merit in SnSe Crystals, Nature, 2014, 508, p 373

    CAS  Google Scholar 

  5. J.P. Heremans, M.S. Dresselhaus, L.E. Bell, and D.T. Morelli, When Thermoelectrics Reached the Nanoscale, Nat. Nanotechnol., 2013, 8, p 471

    CAS  Google Scholar 

  6. C.J. Vineis, A. Shakouri, A. Majumdar, and M.G. Kanatzidis, Nanostructured Thermoelectrics Big Efficiency Gains from Small Features, Adv. Mater., 2010, 22, p 3970

    CAS  Google Scholar 

  7. C.M. Lieber, Nanoscale Science and Technology: Building a Big Future from Small Things, MRS Bull., 2003, 28, p 486–491

    CAS  Google Scholar 

  8. M. Rocci, F. Rossella, U.P. Gomes, V. Zannier, F. Rossi, D. Ercolani, L. Sorba, F. Beltram, and S. Roddaro, Tunable Esaki Effect in Catalyst-Free InAs/GaSb Core-Shell Nanowires, Nano Lett., 2016, 16, p 7950

    CAS  Google Scholar 

  9. J. David, F. Rossella, M. Rocci, D. Ercolani, L. Sorba, F. Beltram, M. Gemmi, and S. Roddaro, Crystal Phases in Hybrid Metal-Semiconductor Nanowire Devices, Nano Lett., 2017, 17, p 2336

    CAS  Google Scholar 

  10. P. Caroff, J.B. Wagner, K.A. Dick, H.A. Nilsson, M. Jeppsson, K. Deppert, L. Samuelson, L.P. Wallenberg, and L.-E. Wernersson, High-Quality InAs/InSb Nanowire Heterostructures Grown by Metal-Organic Vapor-Phase Epitaxy, Small, 2008, 4, p 878

    CAS  Google Scholar 

  11. L. Lugani, D. Ercolani, F. Rossi, G. Salviati, F. Beltram, and L. Sorba, Faceting of InAs-InSb Heterostructured Nanowires, Cryst. Growth Des., 2010, 10, p 4038

    CAS  Google Scholar 

  12. H.A. Nilsson, P. Caroff, C. Thelander, M. Larsson, J.B. Wagner, L.E. Wernersson, L. Samuelson, and H.Q. Xu, Giant, Level-Dependent g Factors in InSb Nanowire Quantum Dots, Nano Lett., 2009, 9, p 3151

    CAS  Google Scholar 

  13. F. Rossella, A. Bertoni, D. Ercolani, M. Rontani, L. Sorba, F. Beltram, and S. Roddaro, Nanoscale Spin Rectifiers Controlled by the Stark Effect, Nat. Nanotechnol., 2014, 9, p 997C1001

    Google Scholar 

  14. C. Fasth, A. Fuhrer, L. Samuelson, V.N. Golovach, and F.D. Loss, Direct Measurement of the Spin-Orbit Interaction in a Two-Electron InAs Nanowire Quantum Dot, Phys. Rev. Lett., 2007, 98, p 266801

    CAS  Google Scholar 

  15. C. Thelander, L.E. Freoberg, C. Rehnstedt, L. Samuelson, and L.-E. Wernersson, Vertical Enhancement-Mode InAs Nanowire Field-Effect Transistor with 50-nm Wrap Gate, IEEE Electron Device Lett., 2008, 29, p 206

    CAS  Google Scholar 

  16. M. Egard, S. Johansson, A.C. Johansson, K.M. Persson, A.W. Dey, B.M. Borg, C. Thelander, L.-E. Wernersson, and E. Lind, Vertical InAs Nanowire Wrap Gate Transistors with f(t) > 7 GHz and f(Max) > 20 GHz, Nano Lett., 2010, 10, p 809

    CAS  Google Scholar 

  17. A. Arcangeli, F. Rossella, A. Tomadin, J. Xu, D. Ercolani, L. Sorba, F. Beltram, A. Tredicucci, M. Polini, and S. Roddaro, Gate-Tunable Spatial Modulation of Localized Plasmon Resonances, Nano Lett., 2016, 16, p 5688

    CAS  Google Scholar 

  18. S.P. Svensson, T. Martensson, J. Treagardh, C. Larsson, M. Rask, D. Hessman, L. Samuelson, and J. Ohlsson, Monolithic GaAs/InGaP Nanowire Light Emitting Diodes on Silicon, Nanotechnology, 2008, 19, p 305201

    Google Scholar 

  19. F. Rossella, V. Piazza, M. Rocci, D. Ercolani, L. Sorba, F. Beltram, and S. Roddaro, GHz Electroluminescence Modulation in Nanoscale Subwavelength Emitters, Nano Lett., 2016, 9, p 5521

    Google Scholar 

  20. U.P. Gomes, D. Ercolani, V. Zannier, F. Beltram, and L. Sorba, Controlling the Diameter Distribution and Density of InAs nanowires Grown by Au-Assisted Methods, Semicond. Sci. Technol., 2015, 30, p 115012

    Google Scholar 

  21. S. Roddaro, D. Ercolani, M.A. Safeen, S. Suomalainen, F. Rossella, F. Giazotto, L. Sorba, and F. Beltram, Giant Thermo-Voltage in Single InAs Nanowire Field-Effect Transistors, Nano Lett., 2013, 13, p 3638

    CAS  Google Scholar 

  22. S. Roddaro, D. Ercolani, M.A. Safeen, F. Rossella, V. Piazza, F. Giazotto, L. Sorba, and F. Beltram, Large Thermal Biasing of Individual Gated Nanostructures, Nano Res., 2014, 7, p 579

    Google Scholar 

  23. E.S. Tikhonov, D.V. Shovkun, D. Ercolani, F. Rossella, M. Rocci, L. Sorba, S. Roddaro, and V.S. Khrapai, Local Noise in a Diffusive Conductor, Sci. Rep., 2016, 6, p 30621

    CAS  Google Scholar 

  24. E.S. Tikhonov, D.V. Shovkun, D. Ercolani, F. Rossella, M. Rocci, L. Sorba, S. Roddaro, and V.S. Khrapai, Noise Thermometry Applied to Thermoelectric Measurements in InAs Nanowires, Semicond. Sci. Technol., 2016, 31, p 104001

    Google Scholar 

  25. A.I. Boukai, Y. Bunimovich, J. Tahir-Kheli, J.-K. Yu, W.A. Goddard, III, and J.R. Heath, Silicon Nanowires as Efficient Thermoelectric Materials, Nature, 2008, 451, p 168

    CAS  Google Scholar 

  26. A.I. Hochbaum, R. Chen, R.D. Delgado, W. Liang, E.C. Garnett, M. Najarian, A. Majumdar, and P. Yang, Enhanced Thermoelectric Performance of Rough Silicon Nanowires, Nature, 2008, 451, p 163

    CAS  Google Scholar 

  27. P.M. Wu, J. Gooth, X. Zianni, S. Fahlvik Svensson, J.G. Gluschke, K.A. Dick, C. Thelander, K. Nielsch, and H. Linke, Large Thermoelectric Power Factor Enhancement Observed in InAs Nanowires, Nano Lett., 2013, 13, p 4080

    CAS  Google Scholar 

  28. Y. Tian, M.R. Sakr, J.M. Kinder, D. Liang, M.J. MacDonald, R.L.J. Qiu, H.J. Gao, and X.P.A. Gao, One-Dimensional Quantum Confinement Effect Modulated Thermoelectric Properties in InAs Nanowires, Nano Lett., 2012, 12, p 6492

    CAS  Google Scholar 

  29. F. Rossella, G. Pennelli, and S. Roddaro, Measurement of the thermoelectric properties of individual nanostructures, 2018, https://doi.org/10.1016/bs.semsem.2018.02.001

  30. M.Y. Swinkels, M.R. van Delft, D.S. Oliveira, A. Cavalli, I. Zardo, R.W. van der Heijden, and E.P.A.M. Bakkers, Diameter Dependence of the Thermal Conductivity of InAs Nanowires, Nanotechnology, 2015, 26, p 385401

    CAS  Google Scholar 

  31. S. Yazji, E.A. Hoffman, D. Ercolani, F. Rossella, A. Pitanti, A. Cavalli, S. Roddaro, G. Abstreiter, L. Sorba, and I. Zardo, Complete Thermoelectric Benchmarking of Individual InSb Nanowires Using Combined Micro-Raman and Electric Transport Analysis, Nano Res., 2015, 8, p 4048

    CAS  Google Scholar 

  32. T.Y. Choi, D. Poulikakos, J. Tharian, and I. Sennhauser, Measurement of the Thermal Conductivity of Individual Carbon Nanotubes by the Four-Point Three-ω Method, Nano Lett., 2006, 6, p 1589

    CAS  Google Scholar 

  33. G. Pennelli, A. Nannini, and M. Macucci, J. Appl. Phys., 2014, 115, p 084507

    Google Scholar 

  34. J. Kimling, S. Martens, and K. Nielsch, Thermal Conductivity Measurements Using 1ω and 3ω Methods Revisited for Voltage-Driven Setups, Rev. Sci. Instrum., 2011, 82, p 074903

    CAS  Google Scholar 

  35. J. Ma, Electrical and thermal transport in 2- and 3-dimensional periodic holey silicon. Ph.D. Dissertation, University of Illinois at Urbana-Champaign, 2016. https://www.ideals.illinois.edu/handle/2142/95300. Accessed 1 Feb 2018.

  36. F. Zhou, A.L. Moore, J. Bolinsson, A. Persson, L. Froberg, M.T. Pettes, H. Kong, L. Rabenberg, P. Carff, D.A. Stewart, N. Mingo, K.A. Dick, L. Samuelson, H. Linke, and L. Shi, Thermal Conductivity of Indium Arsenide Nanowires with Wurtzite and Zinc Blende Phases, Phys. Rev. B, 2011, 83, p 205416

    Google Scholar 

  37. P. Offermans, M. Crego-Calama, and S.H. Brongersma, Gas Sensing with Vertical Functionalized InAs Nanowire Arrays, Procedia Eng., 2010, 5, p 1111

    CAS  Google Scholar 

  38. L. Viti, M.S. Vitiello, D. Ercolani, L. Sorba, and A. Tredicucci, Se-Doping Dependence of the Transport Properties in CBE-Grown InAs Nanowire Field Effect Transistors, Nanoscale Res. Lett., 2012, 7, p 159

    Google Scholar 

  39. Z. L. Wang. Nanowires and Nanobelts. Dekker Encyclopedia of Nanoscience and Nanotechnology, 2nd edn, CRC Press, p 3146, 2008.

  40. D.B. Suyatin, C. Thelander, M.T. Björk, I. Maximov, and L. Samuelson, Sulfur Passivation for Ohmic Contact Formation to InAs Nanowires, Nanotechnology, 2007, 18, p 105307

    Google Scholar 

  41. C. Thelander, K.A. Dick, M.T. Borgström, L.E. Fröberg, P. Caroff, H.A. Nilsson, and L. Samuelson, The Electrical and Structural Properties of n-Type InAs Nanowires Grown from Metal-Organic Precursors, Nanotechnology, 2010, 20, p 205703

    Google Scholar 

  42. F. Kreith, Ed., The CRC Handbook of Thermal Engineering, CRC Press, Boca Raton, 2000, ISBN 978-0-8493-9581-X

    Google Scholar 

  43. R. Bowers, R.W. Ure, J.E. Bauerle, and A.J. Cornish, InAs and InSb as Thermoelectric Materials, J. Appl. Phys., 1959, 30, p 930

    Google Scholar 

  44. G. LeGuillou and H.J. Albany, Phonon Conductivity of InAs, Phys. Rev. B, 1972, 5, p 2301

    Google Scholar 

  45. G. Pennelli, E. Dimaggio, and M. Macucci, Improvement of the 3ω Thermal Conductivity Measurement Technique for its Application at the Nanoscale, Rev. Sci. Instrum., 2018, 89, p 016104

    CAS  Google Scholar 

  46. G. Pennelli, E. Dimaggio, and M. Macucci, Thermal Conductivity Reduction in Rough Silicon Nanomembranes, IEEE Trans. Nanotechnol., 2018, https://doi.org/10.1109/tnano.2018.2816119

    Google Scholar 

Download references

Acknowledgments

This work was supported in part by the CNR through the bilateral CNR-RFBR projects 2015-2017. F.R. and V.D. acknowledge the partial financial support of the MIUR through the FIRB project RBFR13NEA4 “UltraNano.”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francesco Rossella.

Additional information

This article is an invited paper selected from presentations at “GiTE 2018” (Thermoelectricity Days), held February 21-22, 2018, in Santa Margherita Ligure, Italy, and has been expanded from the original presentation.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 467 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rocci, M., Demontis, V., Prete, D. et al. Suspended InAs Nanowire-Based Devices for Thermal Conductivity Measurement Using the 3ω Method. J. of Materi Eng and Perform 27, 6299–6305 (2018). https://doi.org/10.1007/s11665-018-3715-x

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-018-3715-x

Keywords

Navigation