Skip to main content
Log in

Pitting Corrosion of 10Ni8CrMoV High-Strength Steel Induced by a Potential Perturbation

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

Pitting corrosion of high-strength steel 10Ni8CrMoV under square wave polarization (SWP) in simulated deep-sea environment is investigated and the possible mechanism is proposed. The results show that potential perturbation generates periodic intensification effect on both anodic and cathodic processes by frequently breaking the electrode equilibrium state. The intensity of periodic intensification effect essentially depends on the concentration gradient of Fe2+ cations at the steel/solution interface which acts as the forced electrochemical oscillator. The concentration gradient and the resulting concentration polarization effect increase periodically with the increase in SWP potential range. The morphology observation of the pitting and electric charge calculation indicate that the periodic intensification effect can promote the initiation and growth of pits by enhancing the anodic dissolution even under cathodic protection, but it is ineffective below the hydrogen evolution potential. The decrease in either upper or lower potential can mitigate anodic dissolution. Through the statistical analysis of pitting size, it is found that the wide potential range tends to activate the metastable pitting formed under hydrostatic pressure, forming densely distributed pitting. Meanwhile, it is more favorable to the formation of fully grown pits with high size dispersion degree when the proportion of electric charge in the anodic process is higher.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. W. Mai, S. Soghrati, and R.G. Buchheit, A Phase Field Model for Simulating the Pitting Corrosion, Corros. Sci., 2016, 110, p 157–166

    Article  CAS  Google Scholar 

  2. R.E. Melchers, Pitting Corrosion of Mild steel in Marine Immersion Environment. Part 1: Maximum Pit Depth, Corrosion, 2004, 60(9), p 824–836

    Article  CAS  Google Scholar 

  3. R.E. Melchers and R. Jeffrey, Early Corrosion of Mild Steel in Seawater, Corros. Sci., 2005, 47(7), p 1678–1693

    Article  CAS  Google Scholar 

  4. F. Gan, Z.W. Sun, G. Sabde, and D.T. Chin, Cathodic Protection to Mitigate External Corrosion of Underground Steel Pipe Beneath Disbonded Coating, Corrosion, 1994, 50(10), p 804–816

    Article  CAS  Google Scholar 

  5. I.A. Metwally and A.H. Al-Badi, Analysis of Different Factors Affecting Cathodic Protection for Deep Well Casings, Mater. Corros., 2015, 61(3), p 245–251

    Article  Google Scholar 

  6. D.T. Chin and T.W. Fu, Corrosion by Alternating Current: A Study of the Anodic Polarization of Mild Steel in Na2SO4 Solution, Corrosion, 1979, 35(11), p 514–523

    Article  CAS  Google Scholar 

  7. D.A. Jones, Effect of Alternating Current on Corrosion of Low Alloy and Carbon Steels, Corrosion, 1978, 34(12), p 428–433

    Article  CAS  Google Scholar 

  8. R.W. Bosch and W.F. Bogaerts, A Theoretical Study of AC-Induced Corrosion Considering Diffusion Phenomena, Corros. Sci., 1998, 40(2), p 323–336

    Article  CAS  Google Scholar 

  9. S.B. Lalvani and X. Lin, A Revised Model for Predicting Corrosion of Materials Induced by Alternating Voltages, Corros. Sci., 1996, 38(10), p 1709–1719

    Article  CAS  Google Scholar 

  10. I.A. Metwally, H.M. Al-Mandhari, A. Gastli, and Z. Nadir, Factors Affecting Cathodic-Protection Interference, Eng. Anal. Bound. Elem., 2007, 31(6), p 485–493

    Article  Google Scholar 

  11. S. Goidanich, L. Lazzari, and M. Ormellese, AC Corrosion—Part 1: Effects on Overpotentials of Anodic and Cathodic Processes, Corros. Sci., 2010, 52(2), p 491–497

    Article  CAS  Google Scholar 

  12. L.W. Wang, X.H. Wang, Z.Y. Cui, Z.Y. Liu, C.W. Du, and X.G. Li, Effect of Alternating Voltage on Corrosion of X80 and X100 Steels in A Chloride Containing Solution—Investigated by AC Voltammetry Technique, Corros. Sci., 2014, 86, p 213–222

    Article  CAS  Google Scholar 

  13. Z.Y. Liu, X.G. Li, and Y.F. Cheng, Understand the Occurrence of Pitting Corrosion of Pipeline Carbon Steel under Cathodic Polarization, Electrochim. Acta, 2012, 60(1), p 259–263

    Article  CAS  Google Scholar 

  14. Z.Y. Liu, X.G. Li, and Y.F. Cheng, Electrochemical State Conversion Model for Occurrence of Pitting Corrosion on A Cathodically Polarized Carbon Steel in A Near-Neutral pH Solution, Electrochim. Acta, 2011, 56(11), p 4167–4175

    Article  CAS  Google Scholar 

  15. R.K. Gupta, M.Y.J. Tan, J. Esquivel, and M. Forsyth, Occurrence of Anodic Current and Corrosion of Steel in Aqueous Media under Fluctuating Cathodic Protection Potentials, Corrosion, 2016, 72(10), p 1243–1251

    Article  CAS  Google Scholar 

  16. Y. Huo, M.Y.J. Tan, and M. Forsyth, Visualising Dynamic Passivation and Localized Corrosion Processes Occurring on Buried Steel Surfaces under the Effect of Anodic Transients, Electrochem. Commun., 2016, 66, p 21–24

    Article  CAS  Google Scholar 

  17. R. Cao, W. Feng, Y. Peng, W.S. Du, Z.L. Tian, and J.H. Chen, Investigation of Abnormal High Impact Toughness in Simulated Welding CGHAZ of A 8%Ni 980 MPa High Strength Steel, Mater. Sci. Eng. A, 2010, 528(2), p 631–642

    Article  Google Scholar 

  18. L. Fan, K.K. Ding, W.M. Guo, P.H. Zhang, and L.K. Xu, 静水压力和预应力对新型 Ni-Cr-Mo-V 高强钢腐蚀行为的影响 (Effect of Hydrostatic Pressure and Pre-Stress on Corrosion Behavior of A New Type Ni-Cr-Mo-V High Strength Steel), Acta Metall. Sin., 2016, 52(6), p 679–788 (in Chinese)

    CAS  Google Scholar 

  19. L. Fan, K.K. Ding, P.H. Zhang, W.M. Guo, K. Pang, and L.K. Xu, Electrochemical Characterization on the Potential Dependent Stress Corrosion Cracking Mechanism of 10Ni8CrMoV High Strength Steel, ISIJ Int., 2017, 57(5), p 888–894

    Article  CAS  Google Scholar 

  20. W.M. Tian, N. Du, S.M. Li, S.B. Chen, and Q.Y. Wu, Metastable Pitting Corrosion of 304 Stainless Steel in 3.5% NaCl Solution, Corros. Sci., 2014, 85(4), p 372–379

    Article  CAS  Google Scholar 

  21. D.K. Kim, S. Muralidharan, T.H. Ha, J.H. Bae, Y.C. Ha, H.G. Lee, and J.D. Scantlebury, Electrochemical Studies on the Alternating Current Corrosion of Mild Steel under Cathodic Protection Condition in Marine Environments, Electrochim. Acta, 2006, 51(25), p 5259–5267

    Article  CAS  Google Scholar 

  22. Z.Y. Liu, X.G. Li, C.W. Du, and Y.F. Cheng, Local Additional Potential Model for Effect of Strain Rate on SCC of Pipeline Steel in an Acidic Soil Solution, Corros. Sci., 2009, 51(12), p 2863–2871

    Article  CAS  Google Scholar 

  23. Y.F. Cheng and J.L. Luo, Statistical Analysis of Metastable Pitting Events on Carbon Steel, Br. Corros. J., 2000, 35(2), p 125–130

    Article  CAS  Google Scholar 

  24. R.E. Melchers, Statistical Characterization of Pitting Corrosion. Part 1: Data Analysis, Corrosion, 2005, 61(8), p 766–777

    Article  CAS  Google Scholar 

  25. P. Refait, A.M. Grolleau, M. Jeannin, E. François, and R. Sabot, Localized Corrosion of Carbon Steel in Marine Media: Galvanic Coupling and Heterogeneity of the Corrosion Product Layer, Corros. Sci., 2016, 111, p 583–595

    Article  CAS  Google Scholar 

  26. R. Jeffrey and R.E. Melchers, Corrosion of Vertical Mild Steel Strips in Seawater, Corros. Sci., 2009, 51(10), p 2291–2297

    Article  CAS  Google Scholar 

  27. T. Okstad, Ø. Rannestad, R. Johnsen, and K. Nisancioglu, Significance of Hydrogen Evolution During Cathodic Protection of Carbon Steel in Seawater, Corrosion, 2007, 63(9), p 857–865

    Article  CAS  Google Scholar 

  28. C.W. Du, L.W. Wang, Z.Y. Liu, Z.Y. Cui, and X.G. Li, Influence of Alternating Voltages on Passivation and Corrosion Properties of X80 Pipeline Steel in High pH 0.5 mol/L NaHCO3 + 0.25 mol/L Na2CO3 Solution, Br. Corros. J., 2015, 50(3), p 248–255

    Google Scholar 

  29. A.M. Beccaria and G. Poggi, Influence of Hydrostatic Pressure on Pitting of Aluminum in Sea Water, Br. Corros. J., 1985, 20(4), p 183–186

    Article  CAS  Google Scholar 

  30. L.W. Wang, L.J. Cheng, J.R. Li, Z.F. Zhu, S.W. Bai, and Z.Y. Cui, Combined Effect of Alternating Current Interference and Cathodic Protection on Pitting Corrosion and Stress Corrosion Cracking Behavior of X70 Pipeline Steel in Near-Neutral pH Environment, Materials, 2018, 11(4), p 465

    Article  Google Scholar 

  31. L. Ramaley and M.S.K. Jr., Theory of Square Wave Voltammetry, Anal. Chem., 1969, 41(11), p 1362–1365

    Article  CAS  Google Scholar 

  32. Z. Nagy, P.J. Hernes, M. Minkoff, G.K. Leaf, and R.H. Land, Effect of Diffusion Layer Structure on the Determination of Corrosion Rates from DC Transient Measurements, J. Electrochem. Soc., 1989, 136(10), p 2816–2820

    Article  CAS  Google Scholar 

  33. M. Zhu, C.W. Du, X.G. Li, Z.Y. Liu, S.R. Wang, J.K. Li, and D.W. Zhang, Effect of AC Current Density on Stress Corrosion Cracking Behavior of X80 Pipeline Steel in High pH Carbonate/Bicarbonate Solution, Electrochim. Acta, 2014, 117(4), p 351–359

    Article  CAS  Google Scholar 

  34. M. Pagitsas and D. Sazou, The Effect of a Sinusoidal Potential Perturbation on the Active–Passive Transition Region of Cobalt in A Phosphoric Acid Solution, J. Electroanal. Chem., 1995, 386(1–2), p 89–99

    Article  Google Scholar 

  35. Z.Y. Liu, Z.Y. Cui, X.G. Li, C.W. Du, and Y.Y. Xing, Mechanistic Aspect of Stress Corrosion Cracking of X80 Pipeline Steel under Non-Stable Cathodic Polarization, Electrochem. Commun., 2014, 48, p 127–129

    Article  Google Scholar 

  36. Z.Y. Liu, L.J. Lu, Y.Z. Huang, and X.G. Li, Mechanistic Aspect of Non-steady Electrochemical Characteristic during Stress Corrosion Cracking of An X70 Pipeline Steel in Simulated Underground Water, Corrosion, 2014, 70(7), p 678–685

    Article  CAS  Google Scholar 

  37. B. Gu, J. Luo, and X. Mao, Hydrogen-Facilitated Anodic Dissolution-Type Stress Corrosion Cracking of Pipeline Steels in Near-Neutral pH Solution, Corrosion, 2012, 55(1), p 96–106

    Article  Google Scholar 

  38. Z.Y. Cui, Z.Y. Liu, L.W. Wang, H.C. Ma, C.W. Du, X.G. Li, and X. Wang, Effect of pH Value on the Electrochemical and Stress Corrosion Cracking Behavior of X70 Pipeline Steel in the Dilute Bicarbonate Solutions, J. Mater. Eng. Perform., 2015, 24(11), p 4400–4408

    Article  CAS  Google Scholar 

  39. Z.Y. Cui, Z.Y. Liu, L.W. Wang, C.W. Du, and X. Wang, Effect of Plastic Deformation on the Electrochemical and Stress Corrosion Cracking Behavior of X70 Steel in Near-Neutral pH Environment, Mater. Sci. Eng. A, 2016, 677, p 259–273

    Article  CAS  Google Scholar 

  40. S.Y. Paredes-Dugarte and B. Hidalgo-Prada, Statistical Analysis of the Optical Interferometry of Pitting Process in Aluminum 3003 Sheets Exposed to Saline Environment, Proc. Mater. Sci., 2015, 8, p 82–90

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the Chinese Defense Technical Basis Program of Science, Technology and Industry (Grant No.: JSHS2017207C001) and Qingdao Basic Application Research Program (Grant No.: 16-5-1-14-jch).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lin Fan or Likun Xu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fan, L., Ding, K., Zhang, P. et al. Pitting Corrosion of 10Ni8CrMoV High-Strength Steel Induced by a Potential Perturbation. J. of Materi Eng and Perform 27, 5794–5802 (2018). https://doi.org/10.1007/s11665-018-3660-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-018-3660-8

Keywords

Navigation