Skip to main content
Log in

Process Parameter Optimization in Refill Friction Spot Welding of 6061 Aluminum Alloys Using Response Surface Methodology

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

6061-T6 aluminum alloy joint was fabricated by refill friction stir spot welding (RFSSW) on which three process parameters of tool rotation speed, sleeve moving rate, and plunge depth make an important effect. The response surface methodology (RSM) was applied to establish a mathematical model to study the effect of process parameters on lap shear fracture load (LSFL) of the RFSSWed joints which were performed in Box–Behnken designs with three factors, three levels and 15 runs. Analysis of variance used to check the adequacy of the developed model indicates that the mathematical model is significant. LSFL increases with the increase in tool rotation speed, sleeve plunge depth, and sleeve moving rate to maximum and then decreases. Sleeve plunge depth makes the most effect on LSFL in all process parameters. The RFSSW process parameters were also optimized using RSM to predict maximize LSFL. The joint produced using a tool rotational speed of 1506 rpm, sleeve moving rate of 1.01 mm/s and sleeve plunge depth of 2.46 mm displays higher LSFL.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. R.S. Mishra and Z.Y. Ma, Friction Stir Welding and Processing, Mater. Sci. Eng. R Rep., 2005, 50(1–2), p 1–78

    Article  Google Scholar 

  2. Y. Sun, N. Tsuji, and H. Fujii, Microstructure and Mechanical Properties of Dissimilar Friction Stir Welding between Ultrafine Grained 1050 and 6061-T6 Aluminum Alloys, Metals, 2016, 6(10), p 249–261

    Article  Google Scholar 

  3. T. Iwashita, Method and Apparatus for Joining, US Patent 6601751: B2, 2003

  4. C. Schilling, J. dos Santos, Method and Device for Joining At Least Two Adjoining Work Pieces by Friction Welding, US Patent 6722556: B2, 2004

  5. Z. Li, S. Ji, Y. Ma, P. Chai, Y. Yue, and S. Gao, Fracture Mechanism of Refill Friction Stir Spot-Welded 2024-T4 Aluminum Alloy, Int. J. Adv. Manuf. Technol., 2016, 86(5–8), p 1925–1932

    Article  Google Scholar 

  6. S.T. Amancio-Filho, A.P.C. Camillo, L. Bergmann, J.F. dos Santos, S.E. Kury, and N.G.A. Machado, Preliminary Investigation of the Microstructure and Mechanical Behaviour of 2024 Aluminium Alloy Friction Spot Welds, Mater. Trans., 2011, 52(5), p 985–991

    Article  Google Scholar 

  7. M.D. Tier, T.S. Rosendo, J.F. dos Santos, N. Huber, J.A. Mazzaferro, C.P. Mazzaferro, and T.R. Strohaecker, The Influence of Refill FSSW Parameters on the Microstructure and Shear Strength of 5042 Aluminium Welds, J. Mater. Process. Technol., 2013, 213(6), p 997–1005

    Article  Google Scholar 

  8. T. Rosendo, B. Parra, M.A.D. Tier, A.A.M. da Silva, J.F. dos Santos, T.R. Strohaecker, and N.G. Alcântara, Mechanical and Microstructural Investigation of Friction Spot Welded AA6181-T4 Aluminium Alloy, Mater. Des., 2011, 32(3), p 1094–1100

    Article  Google Scholar 

  9. T. Rosendo, M. Tier, J. Mazzaferro, C. Mazzaferro, T.R. Strohaecker, and J.F. Dos Santos, Mechanical Performance of AA6181 Refill Friction Spot Welds Under Lap Shear Tensile Loading, Fatigue Fract. Eng. Mater. Struct., 2015, 38(12), p 1443–1455

    Article  Google Scholar 

  10. J. Shen, S.B.M. Lage, U.F.H. Suhuddin, C. Bolfarini, and J.F. dos Santos, Texture Development and Material Flow Behavior During Refill Friction Stir Spot Welding of AlMgSc, Metall. Mater. Trans. A, 2017, 49(1), p 1–14

    Google Scholar 

  11. J.Y. Cao, M. Wang, L. Kong, and L.J. Guo, Hook Formation and Mechanical Properties of Friction Spot Welding in Alloy 6061-T6, J. Mater. Process. Technol., 2016, 230, p 254–262

    Article  Google Scholar 

  12. Z. Xu, Z. Li, S. Ji, and L. Zhang, Refill Friction Stir Spot Welding of 5083-O Aluminum Alloy, J. Mater. Sci. Technol., 2017, https://doi.org/10.1016/j.jmst.2017.02.011

    Google Scholar 

  13. A.H. Plaine, A.R. Gonzalez, U.F.H. Suhuddin, J.F. dos Santos, and N.G. Alcântara, Process Parameter Optimization in Friction Spot Welding of AA5754 and Ti6Al4V Dissimilar Joints Using Response Surface Methodology, Int. J. Adv. Manuf. Technol., 2016, 85(5–8), p 1575–1583

    Article  Google Scholar 

  14. G.E. Box, J.S. Hunter, and W.G. Hunter, Statistics for Experimenters: Design, Innovation, and Discovery, Vol 2, Wiley-Interscience, New York, 2005

    Google Scholar 

  15. A.I. Khuri and S. Mukhopadhyay, Response Surface Methodology, Wiley Interdiscip. Rev. Comput. Stat., 2010, 2(2), p 128–149

    Article  Google Scholar 

  16. N. Aslan and Y. Cebeci, Application of Box–Behnken Design and Response Surface Methodology for Modeling of Some Turkish Coals, Fuel, 2007, 86(1–2), p 90–97

    Article  Google Scholar 

  17. S.L.C. Ferreira, R.E. Bruns, H.S. Ferreira, G.D. Matos, J.M. David, G.C. Brandão, E.G.P. da Silva, L.A. Portugal, P.S. dos Reis, A.S. Souza, and W.N.L. dos Santos, Box–Behnken design: An Alternative for the Optimization of Analytical Methods, Anal. Chim. Acta, 2007, 597(2), p 179–186

    Article  Google Scholar 

  18. N.-K. Nguyen and J.J. Borkowski, New 3-Level Response Surface Designs Constructed from Incomplete Block Designs, J. Stat. Plan. Inference, 2008, 138(1), p 294–305

    Article  Google Scholar 

  19. M. Ahmadnia, S. Shahraki, and M.A. Kamarposhti, Experimental Studies on Optimized Mechanical Properties While Dissimilar Joining AA6061 and AA5010 in a Friction Stir Welding Process, Int. J. Adv. Manuf. Technol., 2016, 87(5–8), p 2337–2352

    Article  Google Scholar 

  20. G. Annadurai and R.Y. Sheeja, Use of Box–Behnken Design of Experiments for the Adsorption of Verofix Red Using Biopolymer, Bioprocess. Eng., 1998, 18(6), p 463–466

    Article  Google Scholar 

  21. N. Babu, N. Karunakaran, and V. Balasubramanian, A Study to Estimate the Tensile Strength of Friction Stir Welded AA 5059 Aluminium Alloy Joints, Int. J. Adv. Manuf. Technol., 2015, 93, p 1–9. https://doi.org/10.1007/s00170-015-7391-9

    Article  Google Scholar 

  22. W. Safeen, S. Hussain, A. Wasim, M. Jahanzaib, H. Aziz, and H. Abdalla, Predicting the Tensile Strength, Impact Toughness, and Hardness of Friction Stir-Welded AA6061-T6 Using Response Surface Methodology, Int. J. Adv. Manuf. Technol., 2016, 87(5–8), p 1765–1781

    Article  Google Scholar 

  23. A.K. Lakshminarayanan, V.E. Annamalai, and K. Elangovan, Identification of Optimum Friction Stir Spot Welding Process Parameters Controlling the Properties of Low Carbon Automotive Steel Joints, J. Mater. Res. Technol., 2015, 4(3), p 262–272

    Article  Google Scholar 

  24. A. Heidarzadeh, H. Khodaverdizadeh, A. Mahmoudi, and E. Nazari, Tensile Behavior of Friction Stir Welded AA 6061-T4 Aluminum Alloy Joints, Mater. Des., 2012, 37, p 166–173

    Article  Google Scholar 

  25. H. Zhang and H. Liu, Mathematical Model and Optimization for Underwater Friction Stir Welding of a Heat-Treatable Aluminum Alloy, Mater. Des., 2013, 45, p 206–211

    Article  Google Scholar 

  26. A. Kubit, R. Kluz, T. Trzepieciński, D. Wydrzyński, and W. Bochnowski, Analysis of the Mechanical Properties and of Micrographs of Refill Friction Stir Spot Welded 7075-T6 Aluminium Sheets, Arch. Civ. Mech. Eng., 2018, 18(1), p 235–244

    Article  Google Scholar 

  27. Y.Q. Zhao, H.J. Liu, S.X. Chen, Z. Lin, and J.C. Hou, Effects of Sleeve Plunge Depth on Microstructures and Mechanical Properties of Friction Spot Welded Alclad 7B04-T74 Aluminum Alloy, Mater. Des., 2014, 62, p 40–46

    Article  Google Scholar 

  28. G.K. Padhy, C.S. Wu, S. Gao, and L. Shi, Local Microstructure Evolution in Al 6061-T6 Friction Stir Weld Nugget Enhanced by Ultrasonic Vibration, Mater. Des., 2016, 92, p 710–723

    Article  Google Scholar 

  29. Y. Uematsu, K. Tokaji, Y. Tozaki, T. Kurita, and S. Murata, Effect of Re-filling Probe Hole on Tensile Failure and Fatigue Behaviour of Friction Stir Spot Welded Joints in Al-Mg-Si Alloy, Int. J. Fatigue, 2008, 30(10–11), p 1956–1966

    Article  Google Scholar 

  30. J.A.E. Mazzaferro, T.D. Rosendo, C.C.P. Mazzaferro, F.D. Ramos, M.A.D. Tier, T.R. Strohaecker, and J.F. dos Santos, Preliminary Study on the Mechanical Behavior of Friction Spot Welds, Soldagem Inspeção, 2009, 14(3), p 238–247

    Article  Google Scholar 

  31. J.Y. Cao, M. Wang, L. Kong, Y.H. Yin, and L.J. Guo, Numerical Modeling and Experimental Investigation of Material Flow in Friction Spot Welding of Al 6061-T6, Int. J. Adv. Manuf. Technol., 2016, 8, p 1–11

    Google Scholar 

  32. L.C. Campanelli, U.F.H. Suhuddin, A.Í.S. Antonialli, J.F. dos Santos, N.G. de Alcântara, and C. Bolfarini, Metallurgy and Mechanical Performance of AZ31 Magnesium Alloy Friction Spot Welds, J. Mater. Process. Technol., 2013, 213(4), p 515–521

    Article  Google Scholar 

Download references

Acknowledgments

The research was sponsored by the State Key Lab of Advanced Welding and Joining, Harbin Institute of Technology (Grant No. AWJ-M13-11), the Indigenous Innovation and Achievement Transformation Program of Shandong Province (Grant No. 2014CGZH1003), the Key Research & Development program of Shandong Province (2015GGX103002), the Production-study-research Cooperative Innovation Demonstration Project Foundation of Weihai City (Grant No. 2014CXY02) and the Science and Technology Development Program of Weihai City (Grant No. 2014DXGJ17).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to L. Zhou or Y. X. Huang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, L., Luo, L.Y., Wang, R. et al. Process Parameter Optimization in Refill Friction Spot Welding of 6061 Aluminum Alloys Using Response Surface Methodology. J. of Materi Eng and Perform 27, 4050–4058 (2018). https://doi.org/10.1007/s11665-018-3472-x

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-018-3472-x

Keywords

Navigation