Skip to main content
Log in

The Effect of Prestrain Temperature on Kinetics of Static Recrystallization, Microstructure Evolution, and Mechanical Properties of Low Carbon Steel

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

In this research, the samples of a low carbon steel sheet were rolled up to a thickness prestrain of 67% at three different temperatures consisted of room, blue brittleness, and subzero temperature. Microhardness, SEM, and tensile tests were carried out to evaluate the static recrystallization kinetics defined by the Avrami equation, microstructural evolution, and mechanical properties. It was found that the Avrami exponent is altered with change in prestrain temperature and it achieves the value of 1 to 1. 5. Moreover, it was indicated that prestraining at subzero temperature followed by annealing at 600 °C leads to considerable enhancement in tensile properties and kinetics of static recrystallization compared to room and blue brittleness temperatures. The prestraining at blue brittleness temperature followed by annealing treatment caused, however, a higher strength and faster kinetics compared with that at room temperature. It was concluded that although from the steel ductility point of view, the blue brittleness temperature is called an unsuitable temperature, but it can be used as prestraining temperature to develop noticeable combination of strength and ductility in low carbon steel.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. R. Song, D. Ponge, D. Raabe, J. Speer, and D. Matlock, Overview of Processing, Microstructure and Mechanical Properties of Ultrafine Grained bcc Steels, Mater. Sci. Eng. A, 2006, 441(1), p 1–17

    Article  Google Scholar 

  2. Y. Ivanisenko, W. Lojkowski, R. Valiev, and H.-J. Fecht, The Mechanism of Formation of Nanostructure and Dissolution of Cementite in a Pearlitic Steel During High Pressure Torsion, Acta Mater, 2003, 51(18), p 5555–5570

    Article  Google Scholar 

  3. Y. Saito, H. Utsunomiya, N. Tsuji, and T. Sakai, Novel Ultra-High Straining Process for Bulk Materials—Development of the Accumulative Roll-Bonding (ARB) Process, Acta Mater, 1999, 47(2), p 579–583

    Article  Google Scholar 

  4. R. Valiev, A. Korznikov, and R. Mulyukov, Structure and Properties of Ultrafine-Grained Materials Produced by Severe Plastic Deformation, Mater. Sci. Eng. A, 1993, 168(2), p 141–148

    Article  Google Scholar 

  5. N. Tsuji and T. Maki, Enhanced Structural Refinement by Combining Phase Transformation and Plastic Deformation in Steels, Scr. Mater., 2009, 60(12), p 1044–1049

    Article  Google Scholar 

  6. R. Ueji, N. Tsuji, Y. Minamino, and Y. Koizumi, Ultragrain Refinement of Plain Low Carbon Steel by Cold-Rolling and Annealing of Martensite, Acta Mater., 2002, 50(16), p 4177–4189

    Article  Google Scholar 

  7. A. Karimi Taheri, T. Maccagno, and J. J. Jonas, Effect of Cooling Rate After Hot Rolling and of Multistage Strain Aging on the Drawability of Low-Carbon-Steel Wire Rod, Metall. Mater. Trans. A, 1995, 26(5), p 1183–1193

    Article  Google Scholar 

  8. A. Karimi Taheri, T. Maccagno, and J. Jonas, Effect of Quench Aging on Drawability in Low Carbon Steels, Mater. Sci. Technol., 1995, 11(11), p 1139–1146

    Article  Google Scholar 

  9. A. Karimi Taheri, T.M. Maccagno, and J.J. Jonas, Dynamic Strain Aging and the Wire Drawing of Low Carbon Steel Rods, ISIJ Int., 1995, 35(12), p 1532–1540

    Article  Google Scholar 

  10. A. Karmakar, M. Mandal, A. Mandal, M.B. Sk, S. Mukherjee, and D. Chakrabarti, Effect of Starting Microstructure on the Grain Refinement in Cold-Rolled Low-Carbon Steel During Annealing at Two Different Heating Rates, Metall. Mater. Trans. A, 2016, 47(1), p 268–281

    Article  Google Scholar 

  11. Y. Huang and L. Froyen, Important Factors to Obtain Homogeneous and Ultrafine Ferrite–Pearlite Microstructure in low Carbon Steel, J. Mater. Process. Technol., 2002, 124(1), p 216–226

    Article  Google Scholar 

  12. R. Ueji, N. Tsuji, Y. Minamino, and Y. Koizumi, Effect of Rolling Reduction on Ultrafine Grained Structure and Mechanical Properties of Low-Carbon Steel Thermomechanically Processed from Martensite Starting Structure, Sci. Technol. Adv. Mater., 2004, 5(1), p 153–162

    Article  Google Scholar 

  13. H. Mao, R. Zhang, L. Hua, and F. Yin, Study of Static Recrystallization Behaviors of GCr15 Steel Under Two-Pass Hot Compression Deformation, J. Mater. Eng. Perform., 2015, 24(2), p 930–935

    Article  Google Scholar 

  14. G.K. Mandal, N. Stanford, P. Hodgson, and J.H. Beynon, Static Recrystallisation Study of As-Cast Austenitic Stainless Steel, Mater. Sci. Eng. A, 2013, 576, p 118–125

    Article  Google Scholar 

  15. C.R. Torres, F. Sanchez, A. Gonzalez, F. Actis, and R. Herreara, Study of the Kinetics of the Recrystallization of Cold-Rolled Low-Carbon Steel, Metall. Mater. Trans. A, 2002, 33(1), p 25–31

    Article  Google Scholar 

  16. Y. Lü, D.A. Molodov, and G. Gottstein, Recrystallization Kinetics and Microstructure Evolution During Annealing of a Cold-Rolled Fe–Mn–C Alloy, Acta Mater., 2011, 59(8), p 3229–3243

    Article  Google Scholar 

  17. Y. Lin, M.-S. Chen, and J. Zhong, Study of Static Recrystallization Kinetics in a Low Alloy Steel, Comput. Mater. Sci., 2008, 44(2), p 316–321

    Article  Google Scholar 

  18. Y. Lin and M.-S. Chen, Study of Microstructural Evolution During Static Recrystallization in a Low Alloy Steel, J. Mater. Sci., 2009, 44(3), p 835–842

    Article  Google Scholar 

  19. E. Ahmad, F. Karim, K. Saeed, T. Manzoor, and G. Zahid, Effect of Cold Rolling and Annealing on the Grain Refinement of Low Alloy Steel, IOP Conference Series: Materials Science and Engineering, 2014, IOP Publishing, p 012029

  20. P. Saidi, S. Shahandeh, and J.J. Hoyt, Relationship Between Recrystallization Kinetics and the Inhomogeneity of Stored Energy, Metallurgical and Materials Transactions A, 2015, 46(7), p 2975–2985

    Article  Google Scholar 

  21. I. Dolzhenkov, Influence of Deformation Rate on the Blue Brittleness Temperature and Dislocation Density of Carbon Steel, Met. Sci. Heat Treat., 1967, 9(6), p 423–426

    Article  Google Scholar 

  22. R. Doherty, D. Hughes, F. Humphreys, J. Jonas, D.J. Jensen, M. Kassner, W. King, T. McNelley, H. McQueen, and A. Rollett, Current Issues in Recrystallization: A Review, Mater. Sci. Eng. A, 1997, 238(2), p 219–274

    Article  Google Scholar 

  23. A. Glezer, V. Rusanenko, O. Zhukov, M. Libman, and A. Klippenshtein, Effect of Cryogenic Deformation on the Structure and Properties Of Chromium-Nickel Steels, Russ. Metall., 2012, 2012(10), p 869

    Article  Google Scholar 

  24. M. Oyarzábal, A. Martínez-de-Guerenu, and I. Gutiérrez, Effect of Stored Energy and Recovery on the Overall Recrystallization Kinetics of a Cold Rolled Low Carbon Steel, Mater. Sci. Eng. A, 2008, 485(1), p 200–209

    Article  Google Scholar 

  25. M. Shirdel, H. Mirzadeh, and M. Parsa, Nano/Ultrafine Grained Austenitic Stainless Steel Through the Formation and Reversion of Deformation-Induced Martensite: Mechanisms, Microstructures, Mechanical Properties, and TRIP Effect, Mater. Charact., 2015, 103, p 150–161

    Article  Google Scholar 

  26. H. Azizi-Alizamini, M. Militzer, and W.J. Poole, Austenite Formation in Plain Low-Carbon Steels, Metall. Mater. Trans. A, 2011, 42(6), p 1544–1557

    Article  Google Scholar 

  27. V. Gavriljuk, Comment on “Cementite Decomposition in Heavily Drawn Pearlite Steel Wire”, Scr. Mater., 2002, 46(2), p 175–177

    Article  Google Scholar 

  28. Z. Lv, S. Sun, Z. Wang, M. Qv, P. Jiang, and W. Fu, Effect of Alloying Elements Addition on Coarsening Behavior of Pearlitic Cementite Particles After Severe Cold Rolling and Annealing, Mater. Sci. Eng. A, 2008, 489(1), p 107–112

    Article  Google Scholar 

  29. H. Wu, L. Du, Z. Ai, and X. Liu, Static Recrystallization and Precipitation Behavior of a Weathering Steel Microalloyed with Vanadium, J. Mater. Sci. Technol., 2013, 29(12), p 1197–1203

    Article  Google Scholar 

  30. J. Huang, W. Poole, and M. Militzer, Austenite Formation During Intercritical Annealing, Metall. Mater. Trans. A, 2004, 35(11), p 3363–3375

    Article  Google Scholar 

  31. T. Ungár and A. Borbély, The Effect of Dislocation Contrast on x-ray Line Broadening: A New Approach to Line Profile Analysis, Appl. Phys. Lett., 1996, 69(21), p 3173–3175

    Article  Google Scholar 

  32. T. Ungár, I. Dragomir, A. Revesz, and A. Borbély, The Contrast Factors of Dislocations in Cubic Crystals: The Dislocation Model of Strain Anisotropy in Practice, J. Appl. Crystallogr., 1999, 32(5), p 992–1002

    Article  Google Scholar 

  33. F.J. Humphreys and M. Hatherly, Recrystallization And Related Annealing Phenomena, Elsevier, Amsterdam, 2012

    Google Scholar 

  34. Y. Mazaheri, A. Kermanpur, A. Najafizadeh, and A.G. Kalashami, Kinetics of Ferrite Recrystallization and Austenite Formation During Intercritical Annealing of the Cold-Rolled Ferrite/Martensite Duplex Structures, Metall. Mater. Trans. A, 2016, 47(3), p 1040–1051

    Article  Google Scholar 

  35. S. Etesami and M. Enayati, Microstructural Evolution and Recrystallization Kinetics of a Cold-Rolled, Ferrite-Martensite Structure During Intercritical Annealing, Metall. Mater. Trans. A, 2016, 47(7), p 3271–3276

    Article  Google Scholar 

  36. Z. Zeng, L. Chen, F. Zhu, and X. Liu, Static Recrystallization Behavior of a Martensitic Heat-Resistant Stainless Steel 403 Nb, Acta Metall. Sin. (Engl. Lett.), 2011, 24(5), p 381–389

    Google Scholar 

  37. M. Ullmann, M. Graf, and R. Kawalla, Static Recrystallization Kinetics of a Twin-Roll Cast AZ31 Alloy, Mater. Today Proc., 2015, 2, p S212–S218

    Article  Google Scholar 

  38. M. Kulakov, W. Poole, and M. Militzer, The Effect of the Initial Microstructure on Recrystallization and Austenite Formation in a DP600 Steel, Metall. Mater. Trans. A, 2013, 44(8), p 3564–3576

    Article  Google Scholar 

  39. D. Yang, E. Brown, D. Matlock, and G. Krauss, Ferrite Recrystallization and Austenite Formation in Cold-Rolled Intercritically Annealed Steel, Metall. Trans. A, 1985, 16(8), p 1385–1392

    Article  Google Scholar 

  40. H. Ashrafi and A. Najafizadeh, Fabrication of the Ultrafine Grained Low Carbon Steel by Cold Compression and Annealing of Martensite, Trans. Indian Inst. Met., 2016, 69(8), p 1467–1473

    Article  Google Scholar 

  41. D.H. Shin, B.C. Kim, K.-T. Park, and W.Y. Choo, Microstructural Changes in Equal Channel Angular Pressed Low Carbon Steel by Static Annealing, Acta Mater., 2000, 48(12), p 3245–3252

    Article  Google Scholar 

  42. J. Kirkaldy and D. Venugopolan, Phase Transformations in Ferrous Alloys, eds, AR Marder and JI Goldstein, AIME,(Warrendale, PA: AIME, 1984), 125, (1984)

  43. H. Hu and S. Goodman, Effect of Manganese on the Annealing Texture and Strain Ratio of Low-Carbon Steels, Metall. Mater. Trans. B, 1970, 1(11), p 3057–3064

    Google Scholar 

  44. M.-C. Zhao, T. Hanamura, F. Yin, H. Qiu, and K. Nagai, Formation of Bimodal-Sized Structure and its Tensile Properties In A Warm-Rolled and Annealed Ultrafine-Grained Ferrite/Cementite Steel, Metallurgical and Materials Transactions A, 2008, 39(7), p 1691–1701

    Article  Google Scholar 

  45. J. Arruabarrena, B. López, and J.M. Rodriguez-Ibabe, Influence of Prior Warm Deformation on Cementite Spheroidization Process in a Low-Alloy Medium Carbon Steel, Metall. Mater. Trans. A, 2014, 45(3), p 1470–1484

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the research board of Sharif University of Technology, Tehran, Iran, for the provision of the research facilities used in this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Karimi Taheri.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Akbari, E., Karimi Taheri, K. & Karimi Taheri, A. The Effect of Prestrain Temperature on Kinetics of Static Recrystallization, Microstructure Evolution, and Mechanical Properties of Low Carbon Steel. J. of Materi Eng and Perform 27, 2049–2059 (2018). https://doi.org/10.1007/s11665-018-3328-4

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-018-3328-4

Keywords

Navigation