Skip to main content
Log in

Experimental Investigation of Microstructure and Phase Transitions in Ag-Cu-Zn Brazing Alloys

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

Microstructure and phase transitions of selected brazing alloys from the Ag-Cu-Zn ternary system were investigated. Four ternary alloys with silver content in the compositional range from 25 to 60 wt.% were studied using x-ray diffraction (XRD) and scanning electron microscopy coupled with the energy-dispersive spectroscopy (SEM–EDS). Phase transitions of the investigated alloys were measured using differential scanning calorimetry (DSC). Experimentally obtained results were compared with the results of a thermodynamic calculation of the phase equilibria according to the CALPHAD method. The experiments confirmed the optimized thermodynamic parameters for the calculations from the thermodynamic assessment in literature. Phase compositions, liquidus and solidus temperatures were confirmed by the EDS and DTA methods. Additionally, the calculated solidification paths and predicted phase transformations were in agreement with the SEM images.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. L. Sisamoutha, L. Hamdia, and T. Arigab, Investigation of Gap Filling Ability of Ag-Cu-In Brazing Filler Metals, J. Alloys Compd., 2010, 504, p 325–329

    Article  Google Scholar 

  2. P. He, J.C. Feng, and H. Zhou, Microstructure and Strength of Brazed Joints of Ti3Al-Base Alloy with Different Filler Metals, Mater. Charact., 2005, 54, p 338–346

    Article  Google Scholar 

  3. L. Zhang, J. Feng, Z. Li, and H. Liu, Evaluation of Corrosion and Wear Resistance of Friction Stir Welded ZK60 Alloy, Sci. Technol. Weld. Join., 2004, 9, p 280–282

    Article  Google Scholar 

  4. L. Huijie and F. Jicai, Vacuum Brazing TiAl-Based Alloy to 40Cr Steel Using Ag-Cu-Zn Filler Metal, J. Mater. Sci. Lett., 2002, 21, p 9–10

    Article  Google Scholar 

  5. Y. Meng, X. Weihao, Z. Xiuhai, Q. Jun, and Y. Zhenghua, Microstructure and Shear Strength of the Brazed Joint of Ti(C, N)-Based Cermet to Steel, Rare Met., 2010, 29, p 72–77

    Article  Google Scholar 

  6. T. Watanabe, A. Yanagisawa, and T. Sasaki, Development of Ag Based Brazing Filler Metal with Low Melting Point, Sci. Technol. Weld. Join., 2011, 16, p 502–508

    Article  Google Scholar 

  7. C. Ma, S. Xue, and B. Wang, Study on Novel Ag-Cu-Zn-Sn Brazing Filler Metal Bearing Ga, J. Alloys Compd., 2016, 688, p 854–862

    Article  Google Scholar 

  8. L. Zhongmin, X. Songbai, H. Xianpeng, G. Liyong, and G. Wenhua, Study on Microstructure and Property of Brazed Joint of AgCuZn-X(Ga, Sn, In, Ni) Brazing Alloy, Rare Metal Mater. Eng., 2010, 39, p 397–400

    Article  Google Scholar 

  9. Z.R. Li, J. Cao, B. Liu, and J.C. Feng, Effect of La Content on Microstructure Evolution of 20Ag-Cu-Zn-Sn-P-La Filler Metals and Properties of Joints, Sci. Technol. Weld. Join., 2010, 15, p 59–63

    Article  Google Scholar 

  10. K. Zeng and K.N. Tu, Six Cases of Reliability Study of Pb-Free Solder Joints in Electronic Packaging Technology, Mater. Sci. Eng., R, 2002, 38, p 55–105

    Article  Google Scholar 

  11. F. Gao and T. Takemoto, Mechanical Properties Evolution of Sn-3.5 Ag Based Lead-Free Solders by Nanoindentation, Mater. Lett., 2006, 60, p 2315–2318

    Article  Google Scholar 

  12. H. Wang, S.B. Xue, F. Zhao et al., Effects of Ga, Al, Ag, Ce Multi-additions on the Properties of Sn-9Zn Lead-Free Solder, J. Mater. Sci.: Mater. Electron., 2010, 21, p 111–119

    Google Scholar 

  13. H. Wang and S. Xue, Effect of Ag on the Properties of Solders and Brazing Filler Metals, J. Mater. Sci.: Mater. Electron., 2016, 27, p 1–13

    Google Scholar 

  14. H. Okamoto, M.E. Schlesinger, and E.M. Mueller, Ed., ASM Handbook Volume 3: Alloy Phase Diagrams, ASM International, Materials Park, 1992

    Google Scholar 

  15. K.W. Andrews, H.E. Davies, W. Hume-Rothery, and C.R. Oswin, The Equilibrium Diagram of the System Silver-Zinc, Proc. R. Soc. Lond. Ser. A Math. Phys. Sci, 1941, A177, p 149–167

    Article  Google Scholar 

  16. S. Noguchi, An Experimental Study on the Stability of the ζ-phase in the Silver-Zinc System, J. Phys. Soc. Jpn., 1962, 17, p 1844–1856

    Article  Google Scholar 

  17. H. Iwasaki, T. Fujimura, M. Ichikawa, S. Endo, and M. Wakatsuki, Pressure-Induced Phase Transformation in AgZn, J. Phys. Chem. Solids, 1985, 46, p 463–468

    Article  Google Scholar 

  18. V.T. Witusiewicz, S.G. Fries, U. Hecht, A. Drevermann, and S. Rex, Enthalpies of Formation Measurements and Thermodynamic Description of the Ag-Cu-Zn System, Int. J. Mater. Res., 2006, 97, p 556–568

    Google Scholar 

  19. J. Wang, P. Chartrand, and I.H. Jung, Thermodynamic Description of the Ag-(Ca, Li, Zn) and Ca-(In, Li) Binary Systems, Calphad, 2015, 50, p 68–81

    Article  Google Scholar 

  20. K. Labisz, Z. Rdzawski, and M. Pawlyta, Ocena mikrostruktury dwuskładnikowego stopu Ag-Cu starzonego w długim czasie, J. Arch. Mater. Sci. Eng., 2011, 49, p 15–24

    Google Scholar 

  21. L. Moser, J. Otto, and W. Thomas, Gasthermometrische Messungen bei Hohen Temperaturen. III, Z. Phys., 1963, 175, p 327–336

    Article  Google Scholar 

  22. P.R. Subramanian and J.H. Perepezko, The Ag-Cu (Silver-Copper) System, J. Phase Equilib., 1993, 14, p 62–75

    Article  Google Scholar 

  23. K. Fitzner, Q. Guo, J. Wang, and O.J. Kleppa, Enthalpies of Liquid–Liquid Mixing in the Systems Cu-Ag, Cu-Au and Ag-Au by Using an In Situ Mixing Device in a High Temperature Single-Unit Differential Calorimeter, J. Alloys Compd, 1999, 291, p 190–200

    Article  Google Scholar 

  24. J.B. Liu, L. Meng, and Y.W. Zeng, Microstructure Evolution and Properties of Cu-Ag Microcomposites with Different Ag Content, Mat. Sci. Eng. A, 2006, 435–436, p 237–244

    Article  Google Scholar 

  25. A.E. Gheribia, J. Rogeza, F. Marinellib, J.C. Mathieua, and M.C. Record, Introduction of Pressure in Binary Phase Diagram Calculations. Application to the Ag-Cu System, Calphad, 2007, 31, p 380–389

    Article  Google Scholar 

  26. G. Garzel, J. Janczak-Rusch, and L. Zabdyr, Reassessment of the Ag-Cu Phase Diagram for Nanosystems Including Particle Size and Shape Effect, Calphad, 2012, 36, p 52–56

    Article  Google Scholar 

  27. G.V. Raynor, Annotated Equilibrium Diagram Series, Vol 3, The Institute of Metals, London, 1944

    Google Scholar 

  28. T.B. Massalski, J.L. Murray, L.H. Bennett, and H. Baker, Binary Alloy Phase Diagrams, American Society for Metals, Metals Park, 1986

    Google Scholar 

  29. M. Kowalski and P.J. Spencer, Thermodynamic Reevaluation of the Cu-Zn System, J. Phase Equilib., 1993, 14, p 432–438

    Article  Google Scholar 

  30. N. David, J.-M. Fiorani, M. Vilasi, and J. Hertz, Thermodynamic Assessment of the Al-Cu-Zn System, Part III: Al-Cu-Zn Ternary System, J. Phase Equilib., 2003, 24, p 240–248

    Article  Google Scholar 

  31. W. Gierlotka and S.W. Chen, Thermodynamic Descriptions of the Cu-Zn System, J. Mater. Res., 2008, 23, p 258–263

    Article  Google Scholar 

  32. S.-M. Liang, H.-M. Hsiao, and R. Schmid-Fetzer, Thermodynamic Assessment of the Al-Cu-Zn System, Part I: Cu-Zn Binary System, Calphad, 2015, 51, p 224–232

    Article  Google Scholar 

  33. Y.A. Chang, D. Golberg, and J.P. Neumann, Phase Diagrams and Thermodynamic Properties of Ternary Copper-Silver Systems, J. Phys. Chem. Ref. Data, 1977, 6, p 621–673

    Article  Google Scholar 

  34. K.J. Röenkä, F.J.J. van Loo, and J.K. Kivilathi, Study of Diffusion Paths in the System Cu-Ag-Zn, Z. Metallkd., 1997, 88, p 9–13

    Google Scholar 

  35. V.T. Witusiewicz, U. Hecht, S. Rex, and F. Sommer, Partial and Integral Enthalpies of Mixing of Liquid Ag-Al-Cu and Ag-Cu-Zn Alloys, J. Alloys Compd., 2002, 337, p 189–201

    Article  Google Scholar 

  36. P.C. Shih and K.L. Lin, Spallation of Interfacial Ag-Au-Cu-Zn Compounds in Sn-Ag-Cu/Sn-Zn-Bi Joints During 210 °C Reflow, J. Alloys Compd., 2007, 439, p 137–142

    Article  Google Scholar 

  37. Ł.J. Wierzbicki, W. Malec, J. Stobrawa, B. Cwolek, and B. Juszczyk, Studies Into New, Environmentally Friendly Ag-Cu-Zn-Sn Brazing Alloys of Low Silver Content, Arch. Metall. Mater., 2011, 56, p 147–158

    Article  Google Scholar 

  38. S.P. Dimitrijević, Z. Anđić, Ž. Kamberović, S.B. Dimitrijević, and N. Vuković, Recycling of Silver-Plated Brass for Production of High Purity Copper and Ultrafine Silver Powder for Electric Contacts, Bulg. Chem. Commun., 2014, 46, p 814–824

    Google Scholar 

  39. C.B. Alcock, V.P. Itkin, and M.K. Horrigan, Vapour Pressure Equations for the Metallic Elements: 298-2500 K, Can. Metall. Q., 1984, 23, p 309–313

    Article  Google Scholar 

  40. A.M. Klimova, V.A. Ananichev, M. Arif, and L.N. Blinov, Investigation of the Saturated Vapor Pressure of Zinc, Selenium, and Zinc Selenide, Glass Phys. Chem, 2005, 31, p 760–762

    Article  Google Scholar 

  41. N. Saunders and A.P. Miodownik, CALPHAD (A Comprehensive Guide), Elsevier, London, 1998

    Google Scholar 

  42. H.L. Lukas, S.G. Fries, and B. Sundman, Computational Thermodynamics, Cambridge University Press, Cambridge, 2007

    Book  Google Scholar 

  43. W. Cao, S.L. Chen, F. Zhang, K. Wu, Y. Yang, Y.A. Chang, R. Schmid-Fetzer, and W.A. Oates, PANDAT Software with PanEngine, PanOptimizer and PanPrecipitation for Multi-component Phase Diagram Calculation and Materials Property Simulation, Calphad, 2009, 33, p 328–342

    Article  Google Scholar 

  44. W.J. Boettinger, U.R. Kattner, K.-W. Moon, and J.H. Perepezko, DTA and Heat-Flux DSC Measurements of Alloy Melting and Freezing, NIST Special Publication 960-15, Washington, 2006

    Google Scholar 

Download references

Acknowledgments

This work has been supported by the Ministry of Education, Science and Technological Development of the Republic of Serbia, Projects Nos. TR 34033 and ON 172037. Calculations were performed by Pandat 8.1 software.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stevan P. Dimitrijević.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dimitrijević, S.P., Manasijević, D., Kamberović, Ž. et al. Experimental Investigation of Microstructure and Phase Transitions in Ag-Cu-Zn Brazing Alloys. J. of Materi Eng and Perform 27, 1570–1579 (2018). https://doi.org/10.1007/s11665-018-3258-1

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-018-3258-1

Keywords

Navigation