Skip to main content
Log in

Effect of MoSi2 Content on Dry Sliding Tribological Properties of Zr-Based Bulk Metallic Glass Composites

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

Zr55Cu30Al10Ni5 bulk metallic glass and its composites were prepared by suction casting into a copper mold. The effect of MoSi2 content on the tribological behavior of Zr55Cu30Al10Ni5 BMG was studied by using a high-speed reciprocating friction and wear tester. The results indicate that the friction coefficient and wear resistance of the BMGs can be improved by a certain amount of crystalline phase induced by MoSi2 content from 1 to 3% and deteriorated with MoSi2 content of 4%. The wear mechanism of both the metallic glass and its composite is abrasive wear. The mechanism of crystalline phase-dependent tribological properties of the composite was discussed based on the wear track and mechanical properties in the present work. The wear behavior of Zr55Cu30Al10Ni5 BMG and its composite indicates that a good combination of the toughness and the hardness can make the composite be well wear resistant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. A. Inoue, T. Zhang, and T. Masumoto, Al-La-Ni Amorphous Alloy with a Wide Supercooled Liquid Region, Mater. Trans., JIM, 1989, 30, p 965–972

    Article  Google Scholar 

  2. W.L. Johnson, Bulk Glass-forming Metallic Alloys: Science and Technology, MRS Bull., 1999, 24, p 42–56

    Article  Google Scholar 

  3. W.H. Wang, C. Dong, and C.H. Shek, Bulk Metallic Glasses, Mater. Sci. Eng., 2004, R44, p 45–89

    Google Scholar 

  4. M.F. Ashby and A.L. Greer, Metallic Glasses as Structural Materials, Scripta Mater., 2006, 54, p 321–326

    Article  Google Scholar 

  5. H.C. Yim, R.D. Conner, F. Szues, and W.L. Johnson, Processing, Microstructure and Properties of Ductile Metal Particulate Reinforced Zr57Nb5Al10Cu15.4Ni12.6 Bulk Metallic Glass Composites, Acta Mater., 2002, 50, p 2737–2745

    Article  Google Scholar 

  6. D.C. Hofmann, J.Y. Suh, A. Wiest, G. Duan, M.L. Lind, M.D. Demetriou et al., Designing Metallic Glass Matrix Composites with High Toughness and Tensile Ductility, Nature, 2008, 451, p 1085–1089

    Article  Google Scholar 

  7. M. Martin, L. Meyer, L. Kecskes, and N.N. Thadhani, Uniaxial and Biaxial Compressive Response of a Bulk Metallic Composite over a Range of Strain Rates and Temperatures, J. Mater. Res., 2009, 24, p 66–78

    Article  Google Scholar 

  8. Y. Wu, D.Q. Zhou, W.L. Song, H. Wang, Z.Y. Zhang, D. Ma et al., Ductilizing Bulk Metallic Glass Composite by Tailoring Stacking Fault Energy, Phys. Rev. Lett., 2012, 109, p 245506

    Article  Google Scholar 

  9. J.H. Chen, M.Q. Jiang, Y. Chen, and L.H. Dai, Strain Rate Dependent Shear Banding Behavior of a Zr-based Bulk Metallic Glass Composite, Mater. Sci. Eng., A, 2013, 576, p 134–139

    Article  Google Scholar 

  10. C.C. Hays, C.P. Kim, and W.L. Johnson, Microstructure Controlled Shear Band Pattern Formation and Enhanced Plasticity of Bulk Metallic Glasses Containing in situ Formed Ductile Phase Dendrite Dispersions, Phys. Rev. Lett., 2000, 84, p 2901–2904

    Article  Google Scholar 

  11. J. Das, S.K. Roy, W. Löser, J. Eckert, and L. Schultz, Novel In Situ Nanostructure-Dendrite Composites in Zr-Base Multicomponent Alloy System, Mater. Manuf. Proc., 2004, 19, p 423–437

    Article  Google Scholar 

  12. K.B. Kim, J. Das, F. Baier, and J. Eckert, Propagation of Shear Bands in Ti66.1Cu8Ni4.8Sn7.2Nb13.9 Nanostructure-dendrite Composite during Deformation, Appl. Phys. Lett., 2005, 86, p 171909

    Article  Google Scholar 

  13. T. Gloriant, Microhardness and Abrasive Wear Resistance of Metallic Glasses and Nanostructured Composite Materials, J. Non-cryst. Solid, 2003, 316, p 96–103

    Article  Google Scholar 

  14. A.L. Greer, K.L. Rutherford, and M. Hutchings, Wear Resistance of Amorphous Alloys and Related Materials, Int. Mate. Rev., 2002, 47, p 87–112

    Article  Google Scholar 

  15. X.F. Wu, G.A. Zhang, and F.F. Wu, Wear Behaviour of Zr-based In Situ Bulk Metallic Glass Matrix Composites, Bull. Mater. Sci., 2016, 39, p 703–709

    Article  Google Scholar 

  16. J. Eckert, U. Kühn, N. Mattern, A. Reger-Leonhard, and M. Heilmair, Bulk Nanostructured Zr-based Multiphase Alloys with High Strength and Good Ductility, Scripta Mater., 2001, 44, p 1587–1590

    Article  Google Scholar 

  17. P.J. Tao, Y.Z. Yang, Z.W. Xie, and Y.D. He, Research on Friction and Wear Behavior of a Bulk Metallic Glass under Different Sliding Velocity, Mater. Lett., 2015, 156, p 177–179

    Article  Google Scholar 

  18. L.F. Liu, H.A. Zhang, and C. Shi, Sliding Tribological Characteristics of a Zr-based Bulk Metallic Glass Near the Glass Transition Temperature, Tribol. Lett., 2009, 33, p 205–210

    Article  Google Scholar 

  19. L.H. Dai and Y.L. Bai, Basic Mechanical Behaviors and Mechanics of Shear Banding in BMGs, Int. J. Impact. Engi., 2008, 35, p 704–716

    Article  Google Scholar 

  20. W.H. Wang and H.Y. Bai, Carbon-addition-induced Bulk ZrTiCuNiBe Amorphous Matrix Composite Containing ZrC Particles, Mater. Lett., 2000, 44, p 59–63

    Article  Google Scholar 

  21. M. Calin, J. Eckert, and L. Schultz, Improved Mechanical Behavior of Cu-Ti-based Bulk Metallic Glass by in situ Formation of Nanoscale Precipitates, Scripta Mater., 2003, 48, p 653–658

    Article  Google Scholar 

  22. A. Inoue, W. Zhang, T. Tsurui, A.R. Yavari, and A.L. Greer, Unusual Room-Temperature Compressive Plasticity in Nanocrystal-Toughened Bulk Copper-Zirconium Glass, Philos. Mag. Lett., 2005, 85, p 221–229

    Article  Google Scholar 

  23. H. Choi-Yim and W.L. Johnson, Bulk Metallic Glass Matrix Composite, Appl. Phys. Lett., 1997, 71, p 3808–3810

    Article  Google Scholar 

  24. H. Choi-Yim, R. Busch, U. Köster, and W.L. Johnson, Synthesis and Sharacterization of Particulate Reinforced Zr57Nb5Al10Cu15.4Ni12.6 Bulk Metallic Glass Composites, Acta Mater., 1999, 47, p 2455–2462

    Article  Google Scholar 

  25. G. He, J. Eckert, W. Löser, and L. Schultz, Novel Ti-base Nanostructure-dendrite Composite with Enhanced Plasticity, Nat. Mater., 2003, 2, p 33–37

    Article  Google Scholar 

  26. M.E. Siegrist and J.F. Löffler, Bulk Metallic Glass–graphite Composites, Scripta Mater., 2007, 56, p 1079–1082

    Article  Google Scholar 

  27. Y. Liu, Y.T. Zhu, X.K. Luo, and Z.M. Liu, Wear Behavior of a Zr-based Bulk Metallic Glass and Its Composites, J. Alloys Comp., 2010, 503, p 138–144

    Article  Google Scholar 

  28. H. Chen, Y. He, G.J. Shiflet, and S.J. Poon, Mechanical Properties of Partially Crystallized Aluminum Based Metallic Glasses, Scripta Metall. Mater., 1991, 25, p 1421–1424

    Article  Google Scholar 

  29. A.M. Hodge and T.G. Nieh, Evaluating Abrasive Wear of Amorphous Alloys Using Nanoscratch Technique, Intermetallics, 2004, 12, p 741–748

    Article  Google Scholar 

  30. P.G. Boswell, The Wear Resistance of a Liquid Quenched Metallic Glass, J. Mater. Sci., 1979, 4, p 1505–1507

    Article  Google Scholar 

  31. C.J. Gilbert, R.O. Ritchie, and W.L. Johnson, Fracture Toughness and Fatigue-Crack Propagation in a Zr–Ti–Ni–Cu–Be Bulk Metallic Glass, Appl. Phys. Lett., 1997, 71, p 476–478

    Article  Google Scholar 

  32. Z. Bian, G.L. Chen, G. He, and X.D. Hui, Microstructure and Ductile-Brittle Transition of As-cast Zr-based Bulk Glass Alloys under Compressive Testing, Mater. Sci. Engi., 2001, A316, p 135–144

    Article  Google Scholar 

Download references

Acknowledgments

We are pleased to acknowledge research support from the National Natural Science Foundation of China through Grants 11772127.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Longfei Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, L., Yang, J. Effect of MoSi2 Content on Dry Sliding Tribological Properties of Zr-Based Bulk Metallic Glass Composites. J. of Materi Eng and Perform 26, 6219–6225 (2017). https://doi.org/10.1007/s11665-017-3039-2

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-017-3039-2

Keywords

Navigation