Skip to main content
Log in

EN AW-4032 T6 Piston Alloy After High-Temperature Exposure: Residual Strength and Microstructural Features

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

This study aims to evaluate the effects of prolonged thermal exposure on both microstructural evolution and mechanical properties of the EN AW-4032 T6 piston alloy. For the purpose, the experimental activities have been carried out on samples machined from forged and heat-treated automotive pistons. The effects of overaging have been investigated in the temperature range of 140-290 °C, firstly by evaluating the time-temperature-hardness curves and then by carrying out room-temperature tensile tests on overaged samples. The material softening was substantial and extremely rapid when the soaking temperature exceeded 250 °C. During overaging, both the tensile strength and the residual hardness considerably decreased, and a relationship between these parameters has been established. The alloy behavior in the plastic field has been modeled according to the Hollomon’s equation, showing that both the strain hardening exponent and the strength coefficient are a function of the residual hardness. The results were finally related to the corresponding microstructural changes: OM and FEG-SEM metallographic and fractographic analyses on overaged samples gave evidence of coarsened precipitates along the grain boundaries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. L.F. Mondolfo, Aluminium Alloys: Structure and Properties, Butterwort, London, 1976

    Google Scholar 

  2. Y. Cho, D. Joo, and C. Kim, The Effect of Alloy Addition on the High Temperature Properties of Over-aged Al-Si (CuNiMg) Cast Alloys, Mater. Sci. Forum., 2006, 521, p 461–466. doi:10.4028/www.scientific.net/MSF.519-521.461

    Article  Google Scholar 

  3. Y.H. Cho, Y.-R. Im, S.-W. Kwon, and H.C. Lee, The Effect of Alloying Elements on the Microstructure and Mechanical Properties of Al-12Si Cast Alloys, Mater. Sci. Forum., 2003, 426-432, p 339–344. doi:10.4028/www.scientific.net/MSF.426-432.339

    Article  Google Scholar 

  4. D. Buono, E. Iarrobino, and A. Senatore, Optical Piston Temperature Measurement in an Internal Combustion Engine, SAE Int. J. Engines., 2011, 4, p 482–497. doi:10.4271/2011-01-0407

    Article  Google Scholar 

  5. E. Balducci, A. Morri, L. Ceschini, and A. Morri, Effect of Thermal Exposure on Mechanical Properties of EN AW-2618 and EN AW-4032 Piston Alloys, La Metall. Ital., 2016, 6, p 89–92

    Google Scholar 

  6. G. Cantore, M. Giacopini, R. Rosi, A. Strozzi, P. Pelloni, C. Forte, M. Achilluzzi, G.M. Bianchi, L. Ceschini, A. Morri, Validation of a Combined CFD/FEM Methodology for the Evaluation of Thermal Load Acting on Aluminum Alloy Pistons Through Hardness Measurements in Internal Combustion Engines, Metall. Sci. Technol. 2011, 29

  7. G. Nicoletto, E. Riva, and A. Di Filippo, High Temperature Fatigue Behavior of Eutectic Al-Si-Alloys used for Piston Production, Procedia Eng., 2014, 74, p 157–160. doi:10.1016/j.proeng.2014.06.241

    Article  Google Scholar 

  8. H. Yamagata, The Science and Technology of Materials in Automotive Engines, Woodhead Publishing Limited, Cambridge, 2005

  9. R. Konecna, G. Nicoletto, L. Kunz, and E. Riva, The Role of Elevated Temperature Exposure on Structural Evolution and Fatigue Strength of Eutectic AlSi12 Alloys, Int. J. Fatigue, 2015, 83, p 24–35. doi:10.1016/j.ijfatigue.2015.05.007

    Article  Google Scholar 

  10. M. Rogante, V.T. Lebedev, F. Nicolaie, E. Retfalvi, and L. Rosta, SANS Study of the Precipitates Microstructural Evolution in Al 4032 Car Engine Pistons, Phys. B Condens. Matter, 2005, 358, p 224–231. doi:10.1016/j.physb.2005.01.240

    Article  Google Scholar 

  11. L. Ceschini, A. Morri, A. Morri, and M. Di Sabatino, Effect of Thermal Exposure on the Residual Hardness and Tensile Properties of the EN AW-2618A Piston Alloy, Mater. Sci. Eng. A, 2015, 639, p 288–297. doi:10.1016/j.msea.2015.04.080

    Article  Google Scholar 

  12. MAHLE GmbH, Pistons and Engine Testing, 2012. doi:10.1017/CBO9781107415324.004

  13. E. Alonso, T.M. Lee, C. Bjelkengren, R. Roth, and R.E. Kirchain, Evaluating the Potential for Secondary Mass Savings in Vehicle Lightweighting, Environ. Sci. Technol., 2012, 46, p 2893–2901. doi:10.1021/es202938m

    Article  Google Scholar 

  14. T. Luedeke and M. Vielhaber, Holistic Approach for Secondary Weight Improvements, Procedia CIRP., 2014, 21, p 218–223. doi:10.1016/j.procir.2014.03.139

    Article  Google Scholar 

  15. G. Biroli, G. Caglioti, L. Martini, and G. Riontino, Precipitation Kinetics of AA4032 and AA6082: A Comparison Based on DSC and TEM, Scr. Mater., 1998, 39, p 197–203. doi:10.1016/S1359-6462(98)00140-7

    Article  Google Scholar 

  16. F. Stadler, H. Antrekowitsch, W. Fragner, H. Kaufmann, E.R. Pinatel, and P.J. Uggowitzer, The Effect of Main Alloying Elements on the Physical Properties of Al-Si Foundry Alloys, Mater. Sci. Eng. A., 2013, 560, p 481–491. doi:10.1016/j.msea.2012.09.093

    Article  Google Scholar 

  17. P. Krishnankutty, A. Kanjirathinkal, M.A. Joseph, and M. Ravi, Effect of Aging Time on Mechanical Properties and Wear Characteristics of Near Eutectic Al – Si – Cu – Mg – Ni Piston Alloy, Trans. Indian Inst. Met., 2015, 68, p 25–30. doi:10.1007/s12666-015-0584-y

    Article  Google Scholar 

  18. F. Stadler, H. Antrekowitsch, W. Fragner, H. Kaufmann, and P.J. Uggowitzer, Effect of Main Alloying Elements on Strength of Al-Si Foundry Alloys at Elevated Temperatures, Int. J. Cast Met. Res., 2012, doi:10.1179/1743133612Y.0000000004

    Google Scholar 

  19. F. Stadler, H. Antrekowitsch, W. Fragner, H. Kaufmann, and P.J. Uggowitzer, The Effect of Ni on the High-Temperature Strength of Al-Si Cast Alloys, Mater. Sci. Forum., 2011, 690, p 274–277. doi:10.4028/www.scientific.net/MSF.690.274

    Article  Google Scholar 

  20. Z. Asghar, G. Requena, H.P. Degischer, and P. Cloetens, Three-Dimensional Study of Ni Aluminides in an AlSi12 Alloy by Means of Light Optical and Synchrotron Microtomography, Acta Mater., 2009, 57, p 4125–4132. doi:10.1016/j.actamat.2009.05.010

    Article  Google Scholar 

  21. J.H. Hollomon, Tensile Deformation, Trans. AIME., 1945, 162, p 268–290

    Google Scholar 

  22. G.E. Dieter, Mechanical Metallurgy, McGraw-Hil, New York, 1986

    Google Scholar 

  23. R.E. Reed-Hill, Physical Metallurgy Principles, D. Van Nostran Company, Litton Edu, 1973

    Google Scholar 

  24. R. Konečná, G. Nicoletto, L. Kunz, and M. Svoboda, a Bača, Fatigue Strength Degradation of AlSi12CuNiMg Alloy Due to High Temperature Exposure: A Structural Investigation, Procedia Eng., 2014, 74, p 43–46. doi:10.1016/j.proeng.2014.06.221

    Article  Google Scholar 

  25. F. Novy, M. Janecek, and R. Král, Microstructure Changes in a 2618 Aluminium Alloy During Ageing and Creep, J. Alloy. Compd., 2009, 487, p 146–151

    Article  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the National Council of Research (CNR), Dr. Boromei and Dr. Tarterini for their technical support for SEM-FEG investigations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eleonora Balducci.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Balducci, E., Ceschini, L., Morri, A. et al. EN AW-4032 T6 Piston Alloy After High-Temperature Exposure: Residual Strength and Microstructural Features. J. of Materi Eng and Perform 26, 3802–3812 (2017). https://doi.org/10.1007/s11665-017-2835-z

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-017-2835-z

Keywords

Navigation