Skip to main content
Log in

Corrosion and Wear Behaviors of Cr-Doped Diamond-Like Carbon Coatings

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

A combination of plasma-enhanced chemical vapor deposition and magnetron sputtering techniques has been employed to deposit chromium-doped diamond-like carbon (DLC) coatings on stainless steel, silicon and glass substrates. The concentrations of Cr in the coatings are varied by changing the parameters of the bipolar pulsed power supply and the argon/acetylene gas composition. The coatings have been studied for composition, morphology, surface nature, nanohardness, corrosion resistance and wear resistance properties. The changes in I D /I G ratio with Cr concentrations have been obtained from Raman spectroscopy studies. Ratio decreases with an increase in Cr concentration, and it has been found to increase at higher Cr concentration, indicating the disorder in the coating. Carbide is formed in Cr-doped DLC coatings as observed from XPS studies. There is a decrease in sp 3/sp 2 ratios with an increase in Cr concentration, and it increases again at higher Cr concentration. Nanohardness studies show no clear dependence of hardness on Cr concentration. DLC coatings with lower Cr contents have demonstrated better corrosion resistance with better passive behavior in 3.5% NaCl solution, and corrosion potential is observed to move toward nobler (more positive) values. A low coefficient of friction (0.15) at different loads is observed from reciprocating wear studies. Lower wear volume is found at all loads on the Cr-doped DLC coatings. Wear mechanism changes from abrasive wear on the substrate to adhesive wear on the coating.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. J. Fontaine, C. Donnet, and A. Erdemir, Fundamentals of the Tribology of DLC Coatings, Tribology of Diamond-Like Carbon Films: Fundamentals and Applications, C. Donnet and A. Erdemir, Ed., Springer, New York, 2008, p 139–154

    Chapter  Google Scholar 

  2. J. Robertson, Diamond Like Amorphous Carbon, Mater. Sci. Eng. R, 2002, 37, p 129–281

    Article  Google Scholar 

  3. A. Erdemir, J. Vižintin, M. Kalin, K. Dohda, and S. Jahanmir, Ed., Tribology of Mechanical Systems: A Guide to Present and Future Technologies, ASME Press, New York, 2004, p 139

    Book  Google Scholar 

  4. A. Grill, Diamond Like Carbon: State of The Art, Diamond Relat. Mater., 1999, 8, p 428–434

    Article  Google Scholar 

  5. C. Donnet and A. Grill, Friction Control of Diamond Like Carbon Coatings, Surf. Coat. Technol., 1997, 94, p 456–462

    Article  Google Scholar 

  6. S.C.H. Kwok, P.C.T. Ha, D.R. McKenzie, M.M.M. Bilek, and P.K. Chu, Biocompatibility of Calcium and Phosphorus Doped Diamond-Like Carbon Thin Films Synthesized by Plasma Immersion Ion Implantation and Deposition, Diamond Relat. Mater., 2006, 15, p 893–897

    Article  Google Scholar 

  7. X.Z. Ding, B.K. Tay, S.P. Lau, P. Zhang, and X.T. Zeng, Structural and Mechanical Properties of Ti-Containing Diamond-Like Carbon Films Deposited by Filtered Cathodic Vacuum Arc, Thin Solid Films, 2002, 408, p 183–187

    Article  Google Scholar 

  8. K.I. Schiffmann, Phenomena in Microwear Experiments on Metal-Free and Metal-Containing Diamond-Like Carbon Coatings: Friction Wear Fatigue and Plastic Deformation, Surf. Coat. Technol., 2004, 177, p 453–458

    Article  Google Scholar 

  9. K. Bewilogua, R. Wittorf, H. Thomsen, and M. Weber, DLC Based Coatings Prepared by Reactive DC Magnetron Sputtering, Thin Solid Films, 2004, 447, p 142–147

    Article  Google Scholar 

  10. G. Gassner, P.H. Mayrhofer, J. Patscheider, and C. Mitterer, Thermal Stability of Nanocomposite CrC/a-C: H Thin Films, Thin Solid Films, 2007, 515, p 5411–5417

    Article  Google Scholar 

  11. S. Zhang, X.L. Bui, J. Jiang, and X. Li, Microstructure and Tribological Properties of Magnetron Sputtered nc-TiC/aC Nanocomposite, Surf. Coat. Technol., 2005, 198, p 206–211

    Article  Google Scholar 

  12. A.Y. Wang, K.R. Lee, J.P. Ahn, and J.H. Han, Structure and Mechanical Properties of W Incorporated Diamond-Like Carbon Films Prepared by a Hybrid Ion Beam Deposition Technique, Carbon, 2006, 44, p 1826–1832

    Article  Google Scholar 

  13. I. Gerhards, C. Ronning, U. Vetter, H. Hofsäss, H. Gibhardt, G. Eckold, Q. Li, S.T. Lee, Y.L. Huang, and M. Seibt, Ion Beam Synthesis of Amorphous Carbon Thin Films Containing Metallic Nanoclusters, Surf. Coat. Technol., 2002, 158, p 114–119

    Article  Google Scholar 

  14. S. Dub, Y. Pauleau, and F. Thièry, Mechanical Properties of Nanostructured Copper-Hydrogenated Amorphous Carbon Composite Films Studied by Nanoindentation, Surf. Coat. Technol., 2004, 180, p 551–555

    Article  Google Scholar 

  15. V. Singh, V. Palshin, R.C. Tittsworth, and E.I. Meletis, Structure of Composite Cr-Containing Diamond-Like Carbon Thin Films, Carbon, 2006, 44, p 1280–1286

    Article  Google Scholar 

  16. C. Strondl, N.M. Carvalho, J.T.H.M. De Hosson, and G.J. Van der Kolk, Investigation on the Formation of Tungsten Carbide in Tungsten-Containing Diamond Like Carbon Coatings, Surf. Coat. Technol., 2003, 162, p 288–293

    Article  Google Scholar 

  17. B. Feng, D.M. Cao, W.J. Meng, J. Xu, R.C. Tittsworth, L.E. Rehn, P.M. Baldo, and G.L. Doll, Characterization of Microstructure and Mechanical Behavior of Sputter Deposited Ti-Containing Amorphous Carbon Coatings, Surf. Coat. Technol., 2001, 148, p 153–162

    Article  Google Scholar 

  18. W. Dai, H. Zheng, G.S. Wu, and A.Y. Wang, Effect of Bias Voltage on Growth Property of Cr-DLC Film Prepared by Linear Ion Beam Deposition Technique, Vacuum, 2010, 85, p 231–235

    Article  Google Scholar 

  19. W. Dai, G. Wu, and A.Y. Wang, Preparation Characterization and Properties of Cr-Incorporated DLC Films on Magnesium Alloy, Diamond Relat. Mater., 2010, 19, p 1307–1315

    Article  Google Scholar 

  20. W. Dai, G. Wu, and A. Wang, Structure and Elastic Recovery of Cr-C: H Films Deposited by a Reactive Magnetron Sputtering Technique, Appl. Surf. Sci., 2010, 257, p 244–248

    Article  Google Scholar 

  21. W. Dai, P. Ke, and A. Wang, Microstructure and Property Evolution of Cr-DLC Films with Different Cr Content Deposited by a Hybrid Beam Technique, Vacuum, 2011, 85, p 792–797

    Article  Google Scholar 

  22. W. Dai and A. Wang, Synthesis, Characterization and Properties of the DLC Films with Low Cr Concentration Doping by a Hybrid Linear Ion Beam System, Surf. Coat. Technol., 2011, 205, p 2882–2886

    Article  Google Scholar 

  23. M.C. Chiu, W.P. Hsieh, W.Y. Ho, D.Y. Wang, and S.F. Shieu, Thermal Stability of Cr-Doped Diamond-Like Carbon Films Synthesized by Cathodic Arc Evaporation, Thin Solid Films, 2004, 476, p 258–263

    Article  Google Scholar 

  24. Y. Xiang, W. Cheng-biao, L. Yang, Y. De-yang, and F. Zhi-qiang, Cr-Doped DLC Films in Three Mid-Frequency Dual-Magnetron Power Modes, Surf. Coat. Technol., 2006, 200, p 6765–6769

    Article  Google Scholar 

  25. J. Sun, Z.Q. Fu, W. Zhang, C.B. Wang, W. Yue, S.S. Lin, and M.J. Dai, Friction and Wear of Cr-Doped DLC Films under Different Lubrication Conditions, Vacuum, 2013, 94, p 1–5

    Article  Google Scholar 

  26. J.A. Colón Santana, R. Skomski, V. Singh, V. Palshin, A. Petukhov, Ya.B. Losovyj, A. Sokolov, P.A. Dowben, and I. Ketsman, Magnetism of Cr-Doped Diamond-Like Carbon, J. Appl. Phys., 2009, 105, art. no. 07A930. doi:10.1063/1.3072828

  27. D. Wang and Y.Y. Chang, Structural and Electrical Properties of Cr Doped a-C: H Films Synthesized by a Cathodic-Arc Activated Deposition Process, Surf. Coat. Technol., 2006, 200, p 3170–3174

    Article  Google Scholar 

  28. F. Zhang, S. Krishnaswamy, D. Fei, D.A. Rebinsky, and B. Feng, Ultrasonic Characterization of Mechanical Properties of Cr and W-Doped Diamond-Like Carbon Hard Coatings, Thin Solid Films, 2006, 503, p 250–258

    Article  Google Scholar 

  29. X. Fan, E.C. Dickey, S.J. Pennycook, and M.K. Sunkara, Z-Contrast Imaging and Electron Energy-Loss Spectroscopy Analysis of Chromium-Doped Diamond-Like Carbon Films, Appl. Phys. Lett., 1999, 75, p 2740–2742

    Article  Google Scholar 

  30. H. Renondeau, R.I. Taylor, G.C. Smith, and A.A. Torrance, Friction and Wear Performance of Diamond-Like Carbon and Cr-Doped Diamond-Like Carbon Coatings in Contact with Steel Surfaces, J. Eng. Tribol., 2008, 222, p 231–240

    Google Scholar 

  31. C.W. Zou, H.J. Wang, L. Feng, and S.W. Xue, Effects of Cr Concentrations on the Microstructure, Hardness, and Temperature-Dependent Tribological Properties of Cr-DLC Coatings, Appl. Surf. Sci., 2013, 286, p 137–141

    Article  Google Scholar 

  32. Y. Zhuang, X. Jiang, A.V. Rogachev, D.G. Piliptsou, B. Ye, G. Liu, T. Zhou, and A.S. Rudenkov, Influences of Pulse Frequency on the Structure and Anti-corrosion Properties of the a-C: Cr Films, Appl. Surf. Sci., 2015, 351, p 1197–1203

    Article  Google Scholar 

  33. S. Gayathri, N. Kumar, R. Krishnan, T.R. Ravindran, S. Dash, A.K. Tyagi, and M. Sridharan, Influence of Cr Content on the Micro-structural and Tribological Properties of PLD Grown Nanocomposite DLC-Cr Thin Films, Mater. Chem. Phys., 2015, 167, p 194–200

    Article  Google Scholar 

  34. M. Jelinek, T. Kocourek, J. Zemek, J. Mikšovský, Š. Kubinová, J. Remsa, J. Kopeček, and K. Jurek, Chromium-Doped DLC for Implants Prepared by Laser-magnetron Deposition, Mater. Sci. Eng. C, 2015, 46, p 381–386

    Article  Google Scholar 

  35. W. Yang, Y. Guo, D. Xu, J. Li, P. Wang, P. Ke, and A. Wang, Microstructure and Properties of (Cr:N)-DLC Films Deposited by a Hybrid Beam Technique, Surf. Coat. Technol., 2015, 261, p 398–403

    Article  Google Scholar 

  36. C.-H. Liang, C.-F. Huang, and H.-Y. Tsai, The Influence of Substrate Bias Voltages on Structure, Mechanical Properties and Anti-corrosion Performance of Cr Doped Diamond-Like Carbon Films Deposited by Steered Cathodic Arc Evaporation, Thin Solid Films, 2015, 597, p 88–96

    Article  Google Scholar 

  37. Z. Wu, X. Tian, G. Gui, C. Gong, S. Yang, and P.K. Chu, Microstructure and Surface Properties of Chromium-Doped Diamond-Like Carbon Thin Films Fabricated by High Power Pulsed Magnetron Sputtering, Appl. Surf. Sci., 2013, 276, p 31–36

    Article  Google Scholar 

  38. M. Stern and A.L. Geary, Electrochemical Polarization I. A Theoretical Analysis of the Shape of Polarization Curves, J. Electrochem. Soc., 1957, 104, p 56–63

    Article  Google Scholar 

  39. Standard Test Method for Linearly Reciprocating Ball-on-Flat Sliding Wear, ASTM G133-02

  40. P. Kumar, P.D. Babu, L. Mohan, C. Anandan, and V.K.W. Grips, Wear and Corrosion Behavior of Zr-Doped DLC on Ti-13Zr-13Nb Biomedical Alloy, J. Mater. Eng. Perform., 2013, 22, p 283–293

    Article  Google Scholar 

  41. L. Mohan, P.D. Babu, P. Kumar, and C. Anandan, Influence of Zirconium Doping on the Growth of Apatite and Corrosion Behavior of DLC-Coated Titanium Alloy Ti-13Nb-13Zr, Surf. Interface Anal., 2013, 45, p 1785–1791

    Article  Google Scholar 

  42. C. Anandan, L. Mohan, and P.D. Babu, Electrochemical Studies and Growth of Apatite on Molybdenum Doped DLC Coatings on Titanium Alloy Β-21S, Appl. Surf. Sci., 2014, 296, p 86–94

    Article  Google Scholar 

  43. F.C. Tai, S.C. Lee, J. Chen, C. Wei, and S.H. Chang, Multipeak Fitting Analysis of Raman Spectra on DLCH Film, J. Raman Spectrosc., 2009, 40, p 1055–1059

    Article  Google Scholar 

  44. S. Gayathri, N. Kumar, R. Krishnan, T.R. Ravindran, S. Amirthapandian, S. Dash, A.K. Tyagi, and M. Sridharan, Influence of Transition Metal Doping on the Tribological Properties of Pulsed Laser Deposited DLC Films, Ceram. Int., 2015, 41, p 1797–1805

    Article  Google Scholar 

  45. A.C. Ferrari and J. Robertson, Resonant Raman Spectroscopy of Disordered Amorphous and Diamond Like Carbon, Phys. Rev. B, 2001, 64, art. no. 075414. doi:10.1103/PhysRevB.64.075414

  46. G. Irmer and A. Dorner-Reisel, Micro-Raman Studies on DLC Coatings, Adv. Eng. Mater., 2005, 7, p 694–705

    Article  Google Scholar 

  47. A.P. Piedade, J. Nunes, and M.T. Vieira, Thin Films with Chemically Graded Functionality Based on Fluorine Polymers and Stainless Steel, Acta Biomater., 2008, 4, p 1073–1080

    Article  Google Scholar 

  48. K. Nygren, M. Samuelsson, A. Flink, H. Ljungcrantz, Å.K. Rudolphi, and U. Jansson, Growth and Characterization of Chromium Carbide Films Deposited by High Rate Reactive Magnetron Sputtering for Electrical Contact Applications, Surf. Coat. Technol., 2014, 260, p 326–334

    Article  Google Scholar 

  49. S. Santra, P.K. Hota, R. Bhattarcharyya, P. Bera, P. Ghosh, and S.K. Mandal, Palladium Nanoparticles on Graphite Oxide: A Recyclable Catalyst for the Synthesis of Biaryl Cores, ACS Catal., 2013, 3, p 2776–2789

    Article  Google Scholar 

  50. R. Younesi, P. Norby, and T. Vegge, A New Look at the Stability of Dimethyl Sulfoxide and Acetonitrile in Li-O2 Batteries, ECS Electrochem. Lett., 2014, 3, p A15–A18

    Article  Google Scholar 

  51. Z. Zhao, H. Zheng, Y. Wang, S. Mao, J. Niu, Y. Chen, and M. Shang, Synthesis of Chromium Carbide (Cr3C2) Nanopowders by the Carbonization of the Precursor, J. Refract. Met. Hard Mater., 2011, 29, p 614–617

    Article  Google Scholar 

  52. J.F. Moulder, W.F. Stickle, P.E. Sobol, and K.D. Bomben, Handbook of X-Ray Photoelectron Spectroscopy, J. Chastain, Ed., Perkin-Elmer, Eden Prairie, 1992,

    Google Scholar 

  53. R. Teghil, A. Santagata, A. De Bonis, A. Galasso, and P. Villani, Chromium Carbide Thin Films Deposited by Ultra-Short Pulse Laser Deposition, Appl. Surf. Sci., 2009, 255, p 7729–7733

    Article  Google Scholar 

  54. L. Ji, H. Li, F. Zhao, J. Chen, and H. Zhou, Microstructure and Mechanical Properties of Mo/DLC Nanocomposite Films, Diamond Relat. Mater., 2008, 17, p 1949–1954

    Article  Google Scholar 

  55. R. Paul, A. Dey, A.K. Mukherjee, S.N. Sarangi, and A.K. Pal, Effect of Nanocrystalline Silver Impregnation on Mechanical Properties of Diamond-Like-Carbon Films by Nanoindentation, Indian J. Pure Appl. Phys., 2012, 50, p 252–259

    Google Scholar 

  56. W.H. Kao, Optimized aC Coatings by Doping with Zirconium for Tribological Properties and Machining Performance, Diamond Relat. Mater., 2007, 16, p 1896–1904

    Article  Google Scholar 

  57. Y.F. Zheng, X.L. Liu, and H.F. Zhang, Properties of Zr-ZrC-ZrC/DLC Gradient Films on TiNi Alloy by The PIIID Technique Combined with PECVD, Surf. Coat. Technol., 2008, 202, p 3011–3016

    Article  Google Scholar 

  58. J.C. Sánchez-López and A. Fernández, Doping and Alloying Effects on DLC Coatings, Tribology of Diamond-Like Carbon Films: Fundamentals and Applications, C. Donnet and A. Erdemir, Ed., Springer, New York, 2008, p 311–338

    Chapter  Google Scholar 

  59. D. Caschera, F. Federici, S. Kaciulis, L. Pandolfi, A. Cusma, and G. Padeletti, Deposition of Ti-Containing Diamond-Like Carbon (DLC) Films by PECVD Technique, Mater. Sci. Eng., C, 2007, 27, p 1328–1330

    Article  Google Scholar 

Download references

Acknowledgments

The work was carried out under the CSIR network Project ESC-01-01. The authors would like to thank the Director, CSIR-National Aerospace Laboratories, Bengaluru, for his support and permission to publish the work. The authors would like to thank Mr. Siju John, Mr. N. T. Manikandanath and Mr. Muniprakash for FESEM, Raman spectroscopy and wear studies, respectively.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Parthasarathi Bera or C. Anandan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Viswanathan, S., Mohan, L., Bera, P. et al. Corrosion and Wear Behaviors of Cr-Doped Diamond-Like Carbon Coatings. J. of Materi Eng and Perform 26, 3633–3647 (2017). https://doi.org/10.1007/s11665-017-2783-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-017-2783-7

Keywords

Navigation