Skip to main content
Log in

On the Effects of the Rejuvenation Treatment on Mechanical and Microstructural Properties of IN-738 Superalloy

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

A Correction to this article was published on 26 July 2018

This article has been updated

Abstract

The main scope of this paper is to show the effects of a specific rejuvenation treatment studied for IN-38 on both the microstructure and the mechanical properties of the creep-damaged superalloy and to compare the tests results with the virgin material and with the recovery obtained through the standard heat treatment. This work will show that this rejuvenation treatment is able to recover the microstructure of creep-damaged specimens and that the creep and tensile properties of the rejuvenated alloy are even better than the virgin material for the tests performed. Moreover, it will be shown that the standard heat treatment provided for IN-738 is not able to fully recover the microstructure and that the creep properties of the superalloy during the tests have been lower than the virgin material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24

Similar content being viewed by others

Change history

  • 26 July 2018

    Readers should note the following error in the first sentence of Abstract for this article: “IN-38” should be “IN-738”.

References

  1. M.J. Donachie and S.J. Donachie, Superalloys: A Technical Guide, 2nd ed., ASM International, Almere, 2002

    Google Scholar 

  2. G.C. Bieber and R.J. Mihalisin, Structural Studies and Properties of a New Cast High Strength Corrosion Resistant Superalloy, Strength Met. Alloys, Proceedings of the International Conference, 2nd, ASM, 1970, III, p. 1031–1036.

  3. Alloy IN-738 Technical data, INCO, New York, 1981.

  4. S.S. Hosseini, S. Nategh, and A. Ekrami, Microstructural Evolution in Damaged IN738LC Alloy During Various Steps of Rejuvenation Heat Treatments, J. Alloys Compd., 2002, 512, p 340–350

    Article  Google Scholar 

  5. E. Balikci and A. Raman, Characteristics of the γ′ Precipitates at High Temperatures in Ni-Base Polycrystalline Superalloy IN738LC, J. Mater. Sci., 2000, 35, p 3593–3597

    Article  Google Scholar 

  6. E. Balikci, A. Raman, and R.A. Mirshams, Influence of Various Heat Treatments on the Microstructure of Polycrystalline IN738LC, Metall. Mater. Trans. A, 1997, 28A(10), p 1993–2003

    Article  Google Scholar 

  7. P. Wangyao, V. Krongtong, W. Homkrajai, S. Polsilapa, and G. Lothongkum, Comparing Rejuvenated Microstructures After HIP Process and Different Heat Treatments in Cast Nickel Base Superalloys, IN-738 AND GTD-111 After Long-Term Service, Acta Metall. Slov., 2006, 12, p 23–32

    Google Scholar 

  8. Z. Mazur, A. Luna-Ramírez, J.A. Juárez-Islas, and A. Campos-Amezcua, Failure Analysis of a Gas Turbine Blade Made of Inconel 738LC Alloy, Eng. Fail. Anal., 2005, 12(3), p 474–486

    Article  Google Scholar 

  9. A.K. Koul, J.-P. Immarigeon, R. Castillo, P. Lowden, and J. Liburdi, Rejuvenation of Service-Exposed IN-738 Turbine Blades. Proceedings of Superalloys 1988 (sixth International Symposium), 1988, p 755–764

  10. S. Polsilapa, P. Sopon, N. Panich, N. Chuankrerkkul, and A. Thueploy, Reheat Treated Microstructures and Gamma Prime Particle Coarsening Behaviour at 900 °C of Cast Nickel Based Superalloy IN-738, J. Met. Mater. Miner., 2006, 16(2), p 7–13

    Google Scholar 

  11. K.C. Antony and G.W. Goward, Aircraft Gas Turbine Blade and Vane Repair. Proceedings of Superalloys 1988 (sixth International Symposium), 1988, p 745–754

  12. D. Liu, J.C. Lippold, J. Li, S.R. Rohklin, J. Vollbrecht, and R. Grylls, Laser Engineered Net Shape (LENS) Technology for the Repair of Ni-Base Superalloy Turbine Components, Metall. Mater. Trans. A, 2014, 45(10), p 4454–4469

    Article  Google Scholar 

  13. O. Yilmaz, N. Gindy, and J. Gao, A Repair and Overhaul Methodology for Aeroengine Components, Robot. Comput. Integr. Manuf., 2010, 26(2), p 190–201

    Article  Google Scholar 

  14. S. Mokadem, C. Bezençon, A. Hauert, A. Jacot, and W. Kurz, Laser Repair of Superalloy Single Crystals with Varying Substrate Orientations, Metall. Mater. Trans. A, 2007, 38(7), p 1500–1510

    Article  Google Scholar 

  15. M. Okazaki, I. Ohtera, and Y. Harada, Damage Repair in CMSX-4 Alloy Without Fatigue Life Reduction Penalty, Metall. Mater. Trans. A, 2004, 35(2), p 535–542

    Article  Google Scholar 

  16. M. Brandt, S. Sun, N. Alam, P. Bendeich, and A. Bishop, Laser Cladding Repair of Turbine Blades in Power Plants: From Research to Commercialization, Int. Heat Treat. Surf. Eng., 2009, 3(3), p 105–114

    Article  Google Scholar 

  17. C.Y. Su, C.P. Chou, B.C. Wu, and W.C. Lih, Plasma Transferred Arc Repair Welding of the Nickel-Base Superalloy IN-738LC, J. Mater. Eng. Perform., 1997, 6(5), p 619–627

    Article  Google Scholar 

  18. J. Durocher and N.L. Richards, Evaluation of the Low Heat Input Process for Weld Repair of Nickel-Base Superalloys, J. Mater. Eng. Perform., 2011, 20(7), p 1294–1303

    Article  Google Scholar 

  19. S. Vezzù, S. Rech, E. Vedelago, G.P. Zanon, G. Alfeo, A. Scialpi, and R. Huang, On Deposition of Waspaloy Coatings by Cold Spray, Surf. Eng., 2014, 30(5), p 342–351

    Article  Google Scholar 

  20. S. Vezzù, C. Cavallini, S. Rech, E. Vedelago, and A. Giorgetti, Development of High Strength, High Thermal Conductivity Cold Sprayed Coatings to Improve Thermal Management in Hybrid Motorcycles, SAE Int. J. Mater. Manf., 2015, 8(1), p 180–186

    Article  Google Scholar 

  21. S.R. Bell, Repair and Rejuvenation Procedures for Aero Gas-Turbine Hot-Section Components, Mater. Sci. Technol., 1985, 1(8), p 629–634

    Article  Google Scholar 

  22. P. Wangyao, W. Homkrajai, V. Krongtong, N. Panich, and G. Lothongkum, OM Study of Effect of HIP and Heat Treatments on Microstructural Restoration in Cast Nickel Based Superalloy, IN-738, J. Met. Mater. Miner., 2007, 17(2), p 51–56

    Google Scholar 

  23. A.K. Koul and R. Castillo, Assessment of Service Induced Microstructural Damage and Its Rejuvenation in Turbine Blades, Metall. Mater. Trans. A, 1988, 19(8), p 2049–2066

    Article  Google Scholar 

  24. C. Monti, A. Giorgetti, P. Citti, and F. Mastromatteo, Evoluzione microstrutturale della superlega IN738, preventivamente danneggiata a creep, Durante le Varie Fasi del Trattamento Termico di Rejuvenation. Proceedings of the 35th National Conference AIM, November 2014, Rome, Italy

  25. E. Lvova and D. Norsworthy, Influence of Service-Induced Microstructural Changes on the Aging Kinetics of Rejuvenated Ni-Based Superalloy Gas Turbine Blades, J. Mater. Eng. Perform., 2001, 10(3), p 299–312

    Article  Google Scholar 

  26. E. Lvova, A Comparison of Aging Kinetics of New and Rejuvenated Conventionally Cast GTD-111 Gas Turbine Blades, J. Mater. Eng. Perform., 2007, 16(2), p 254–264

    Article  Google Scholar 

  27. S. Holmström and P. Auerkari, Robust Prediction of Full Creep Curves from Minimal Data and Time to Rupture Model, Energy Mater. Mater. Sci. Eng. Energy Syst., 2006, 1(4), p 249–255

    Article  Google Scholar 

  28. OXFORD INSTRUMENTS – INCA, https://www.oxford-instruments.com/products/microanalysis/energy-dispersive-x-ray-systems-eds-edx/eds-for-sem/particle-analysis

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cosimo Monti.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Monti, C., Giorgetti, A., Tognarelli, L. et al. On the Effects of the Rejuvenation Treatment on Mechanical and Microstructural Properties of IN-738 Superalloy. J. of Materi Eng and Perform 26, 2244–2256 (2017). https://doi.org/10.1007/s11665-017-2646-2

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-017-2646-2

Keywords

Navigation